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ABSTRACT

A number of processes that occur in nature as well as those that are a manifestation

of human activities are correlated in nature. They can be described by stochastic non-

markovian processes, and most known results in theory are inthe steady state domain,

assuming that the system has been in operation for a long enough time (ideally infinitely

long), and that the state in which the system starts has no effect on the current behavior of

the system. Nevertheless steady state assumptions do not hold in many applied situations

as the system does not operate for infinitely long and perhapseven gets restarted every

so often. In this thesis we provide a framework to stochastically track these processes.

Application of this theory provide valuable insights into the transient behavior of these

stochastic processes and allows us to model and study the effect of auto-correlations in

the driving processes on transient probabilistic (performance) metrics of interest. In par-

ticular, we study the busy time (both length and number served) of the single server queue.

Applications of the work shown in this thesis are abound. Most processes in
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telecommunications and computer networks exhibit a high degree of variance and are

known to exhibit serial correlations across multiple time scales. In order to develop ac-

curate models to represent these systems, we allow the arrival and the service processes

that characterize the system to be both general and correlated. We specifically study the

busy period and other first passages of an auto-correlatedMEP/MEP/1queueing system

to demonstrate the application of tracking these memory-full processes.

Representing the current state of a system using a relevant starting state vector,

and by allowing the driving process to carry correlations across state transitions of the

underlying quasi-markovian chain enables us to track thesepaths very accurately. The

analysis presented here is in the transient domain and does not require the underlying

processes to be in a steady state. The flexibility that is achieved by being able to model

extremely variant (general) process which are allowed to beauto-correlated allows us to

accurately model many of these real life processes.

In the first part of the thesis we provide solutions to computethe probabilities for

exactly ‘n’ customers being served in a busy period ofMEP/MEP/1queueing systems,

where both the arrival, and the service processes could bothbe general and correlated

Matrix Exponential Processes. We then present matrix exponential representations to

characterize the lengths of sample paths during these busy periods and derive expressions

to compute moments for length of the busy period as well as forthe number of customers

served during the busy period. In the second part of the thesis, we study the effect of

increase in threshold level and the correlations in the arrival and service processes on the
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mean first passage time to go below a given threshold (given that the system just tran-

sitioned from the threshold leveln − 1, to leveln). Finally we study the busy periods

for finite queueing systems, and again study both the length of the busy period and the

number of customers served during such a time.

This abstract of 490 words is approved as to form and content.
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CHAPTER 1

SAMPLE PATH ANALYSIS OF CORRELATED QUEUES

1.1 Motivation

A number of stochastic processes that occur in nature and those that are a man-

ifestation of human activities exhibit correlations and are hence memory-full. Most of

these processes also show high degrees of variances and provide some unique challenges

for researchers trying to build models to capture their behavior. We explore the concept

of this ”memory-full”-ness and provide a framework to trackthese processes. Applica-

tion of this theory provide valuable insights into the transient behavior of these stochastic

processes and allows us to model and study the effect of auto-correlations in the driving

processes on some of these transient probabilistic (performance) metrics.

40  1  2   3

Figure 1: Birth Death Process

Let all possible states the system can assume at any given instant and the transi-

tions from one state to another be represented by a generic birth-death process as shown

in Fig. 1. Consider two generic states ‘A’ and ‘B’ representing two possible states the

system can assume on such a state space. When the system is in agiven state, a new

arrival to the system causes a state transition to the right and customers departing (or ser-

vice completion) cause the system to transition one step to the left. There are multiple
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ways of traversing from state A to state B. If the underlying processes driving the chain

are serially correlated, then the path that is traversed to reach B (from A) might effect the

way in which the system starts once state B is reached; and might effect any other paths of

which “A-B” is a sub-part thereof. Most processes occurringin nature are in fact known

to show serial correlations at multiple time scales. In thisthesis we study the effects of

these serial correlations in the driving processes on how these sample paths progress by

essentially tracking these correlated memory-full processes.

Applications of the work shown in this thesis are abound. We study busy periods

and other first passages of an auto-correlatedMEP/MEP/1Queueing system to demon-

strate the potential and relate the results to applicationsin computer systems and networks.

An application in the financial arena might be to model the progression of price data from

a given price A to a price B. Discrete models are commonly usedto model the future

progression of price series and usually assume the price movement to be uncorrelated

and assign equal probabilities to unit up and unit down movesand assume that the next

move is independent of the previous. These price moves do show correlations often and

we might be able to model the price movement as serially correlated processes. Most of

the financial data is also perceived to be non-stationary which adds another dimension of

complexity. In biological sciences similar analysis can beused to model the progression

of certain growth and/or shrinkage processes. Another application in social sciences is

to model the variation in population of a given species of wildlife. The population of a

given species in a given region depends on various factors which possibly induce effects

that are correlated. For example, a draught or a flood might easily cause the variation

in the local population to be neither normal nor independentof previous time instances.

The flexibility that is achieved by being able to model extremely variant (general) process

2



which are allowed to be auto-correlated allows us to accurately model many of these real

life processes.

By representing the current state of a system by a relevant starting state vector,

and by allowing the driving process to carry correlations across state transitions of the

underlying quasi-markovian chain enables us to track thesepaths very accurately. Any

process which can be modeled as a quasi-birth-death (QBD) chain can be studied using

the techniques presented here. Note that the analysis presented here is in the transient

domain and does not require the underlying processes to be ina steady state.

1.2 Busy Period Analysis

In this section we confine ourselves to the area of computer systems and networks

and show how different problems in this area can be reduced tothe general problem of

probabilistic tracking of memory-full processes. Most processes in telecommunications

and computer networks exhibit a high degree of variance and are known to be serially

correlated. Therefore, in order to develop accurate modelsto represent these systems, we

need to allow for the arrival and the service processes that characterize the system to be

both general and correlated.

Consider the operation of a consolidated server. An individual server that forms

a part of this consolidation could be perceived to be highly utilized if its queues grow

beyond a given threshold, or perhaps its cpu utilizations cross a given threshold level,

or perhaps when its disc access times, or some other performance metrics of interest

cross certain predefined or dynamically adjusted thresholdlevels. A question that often

arises in such a case is when should a server (or process) be allocated more resources
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(processing power, more buffers, etc). The administrator might choose to allocate more

resources to this given server so as to improve system performance (response times etc),

but if the available resources are limited (which they usually are), he/she needs to make

an informed decision on whether or not to allocate additional resources. It is important to

know how long the server will be in this state of high utilization. In other words how long

will the server be in a state that is above a given threshold? Another interesting question

is as follows. Suppose a first threshold level triggers a system to be actively monitored,

but no further action (in addition to closely monitoring thesystem) is required until the

system reaches a second threshold level, at which point someaction is warranted from

the administrator. As soon as the first threshold level is crossed, the solutions proposed

in this thesis provide quantitative measures related to crossing the second threshold level

based on the current state of the system. For example, probabilities of ever reaching the

second level, probabilities for the number of events occurring before we come back to the

first threshold level. This would enable the system administrator to pro-actively manage

the resources at his disposal. We study this problem and few other related problems by

posing them as modifications to the classical Busy Period problem.

Similarly, Queue length fluctuations during a Busy period provide quantitative

measures to actively manage a network/system, whereby resources can be allocated in a

proactive manner leading to optimal system performance. Tostudy these queue length

fluctuations we need to look at the transient Busy Period of the queue from a particular

instant in time.

The Busy Period for a system is defined as the time interval between any two

successive idle periods. It starts when a customer arrives to an empty system and ends
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when the departing customer leaves the system idle for the first time thereafter. The

systems behavior around some threshold level can be studiedby analyzing the system

starting immediately after it crosses this threshold levelfor the given server/process and

ending when we reach this threshold for the first time thereafter. This process can hence

be represented as a first passage process around this threshold level.

The problems we investigate in this thesis are as follows:

• The probabilities for serving exactly ‘n’ customers in a busy period ofMEP/MEP/1

queueing systems, where both the arrival, and the service processes could both be

general and correlated Matrix Exponential Processes.

• Characterize the lengths of sample paths during these busy periods as an ME pro-

cess and find the moments for the length of a busy period.

• Study the effect of increase in threshold level and the correlations in the Arrival

and Service processes on the mean first passage time to go below a given threshold

(given that the system just had a transition from the threshold leveln − 1, to level

n).

• Probabilities that sample paths are of heights greater than‘h’ during a first passage

from leveln to leveln − 1 and the effect of starting level and correlations on these

probabilities.

• Effect of correlations on the probabilities forn customers being served and on busy

periods durations for finite queueing systems.
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1.3 Background Material

Most of the known results in queueing theory are related to steady state behavior.

When studying such systems it is assumed that the system has been in operation for a long

enough time (ideally infinitely long) that the state in whichthe system starts has no effect

on the current behavior of the system. Nevertheless steady state assumptions do not hold

in many applied situations as the system does not operate forinfinitely long and perhaps

even gets restarted every so often.

Busy periods of markovian queues provide insights into the transient nature of the

system. Transient system state equations have been solved using a number of techniques.

Refer to [16] for an excellent introduction to transient analysis and its historical perspec-

tive. We summarize the difference-equation technique in case of an M/M/1 queue and the

technique used by Takács for an M/G/1 type queue as presented in [16].

1.3.1 Difference-equation technique

A busy period is defined as the interval of time from the instant a unit arrives at an

empty system and its service begins, to the instant when the server becomes free for the

first time thereafter. A busy period is a random variable (r.v.), being the first passage time

from state 1 to state 0. Denote

T = length of the busy period

b(t) = pdf of T

N∗(t) = number present at time t during a busy period

{N∗(t), t ≥ 0} is a zero-avoiding state process

qn(t) = Pr{N∗(t) = n}, n = 1, 2, . . .

q̄n(s) = Laplace Transform (LT) ofqn(t).
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We haveq1(0) = 1, qn(0) = 0, n 6= 1, for n ≥ 2, qn(t) satisfying the transient

differential-difference equations. Thus, for anM/M/1 system, using traditional notation,

q′n(t) = −(λ + µ)qn(t) + λqn−1(t) + µqn+1(t), n ≥ 2 (1.3.1)

As the termq0(t) will not occur, the equation corresponding ton = 1 will be

q′1(t) = −(λ + µ)q1(t) + µq2(t). (1.3.2)

Taking LT of eq. (1.3.1) and eq. (1.3.2),

µq̄n+1(s) − (s + λ + µ)q̄n(s) + λq̄n−1(s) = 0, n ≥ 2 (1.3.3)

This is a difference equation of order 2. Solving the characteristic equation of eq. (1.3.3)

and inverting the Laplace transform yields,

qn(t) =

(
λ

µ

)n/2
n

λt
e−(λ+µ)tIn(2t

√
λµ), n = 1, 2, . . . (1.3.4)

whereIn is the Bessel function of first kind [16], [15].

Conditioning upon the number of units present at any instantt which complete

their service in (t, t+dt), and taking the limit asdt → 0, gives the density for busy period

length as

b(t) =
1

t
ρ−1/2 exp−(λ+µ)t I1(2t

√
λµ). (1.3.5)

The LST ofT is given by

b∗(s) =
(λ + µ + s) −

√
(λ + µ + s)2 − 4λµ

2λ
. (1.3.6)
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1.3.2 M/M/1 Busy Period - Matrix Exponential Form

We briefly introduce matrix exponential distributions and show an ME represen-

tation for the busy period of theM/M/1 system; more precisely, we show a finite ME

approximation to theM/M/1 busy period. A matrix exponential (ME) distribution is de-

fined as a probability distribution whose density can be written as

f(t) = p exp (−Bt) Be′, t ≥ 0, (1.3.7)

wherep is the starting operator for the process,B is the process rate operator ande ’ is

a summing operator, a vector usually consisting of all 1’s, but not necessarily so. We will

give a detailed introduction to matrix exponential distributions in the next chapter.

To obtain a matrix exponential form for the busy period of theM/M/1 system, we

use its moments (coefficients from Taylor series expansion of eq. 1.3.6) as input to the

moment matching algorithm [43]. Since the LST is not rational, we do not have a finite

matrix exponential representation that matches all the moments of the distribution. We

approximate the distribution to an arbitrary precision. The following finite approximation

is obtained by matching the first nine moments,

p =
[

1
µ−λ

0 0 0 0
]

V =




µ
(µ−λ)2

µ
(µ−λ)3

0 0 0

λ
µ−λ

λ+µ
(µ−λ)2

µ
(µ−λ)3

0 0

0 λ
µ−λ

λ+µ
(µ−λ)2

µ
(µ−λ)3

0

0 0 λ
µ−λ

λ+µ
(µ−λ)2

µ
(µ−λ)3

0 0 0 λ
µ−λ

λ+µ
(µ−λ)2




e =
[

1 0 0 0 0
]
,

whereV = B−1. Substitutingλ = ρµ and using similarity transformations we get the
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following matrix exponential representation:

p =
[

1 0 0 0 0
]

V =
1

(1 − ρ)2µ




(1 − ρ) 1 0 0 0

ρ(1 − ρ) (1 + ρ) 1 0 0

0 ρ (1 + ρ) 1 0

0 0 ρ (1 + ρ) 1

0 0 0 ρ (1 + ρ)




e =
[

1 0 0 0 0
]
.

1.3.3 Takács Integral equation for M/G/1 System

In this section we show the general methodology used to analyze the busy periods

when one of the constituent processes is non-markovian, by taking the case of anM/G/1

system. Assume that a busy period is initiated by a single customer. As this initiating

customer is in service, theith customer who arrives during this time period will be called

theith descendant. Let

T = length of the busy period

G(t) = Pr{T ≤ t}

B(t) = Pr{v ≤ t}, where v is the service time

G∗(s) = LST of T

B∗(s) = LST of v

To obtain the busy period distribution, condition on two events - namely, on the

duration of the service timev of the initiating customer (customer who starts the new busy

period) and on the numberA of arrivals during the service time of the initiating customer.

Given thatv = x andA = n, thenn sub-busy periodsT1, . . . , Tn are generated by then
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descendants. Assuming that theT ′

is are IID and are independent ofx, we have

E{e−sT |v = x, A = n} = e−sx [G∗(s)]n (1.3.8)

Finally the LST of T is obtained by un-conditioning onv andA. Hence

E{e−sT} =

∫
∞

x=0

∞∑

n=0

E{e−sT |v = x, A = n}Pr{A = n}dB(x) (1.3.9)

Simplifying this equation results in the well known functional equation for theLST of

busy period as

G∗(s) = B∗ [s + λ − λG∗(s)] . (1.3.10)

Known solution techniques rely on finding either the Laplacetransform of the

busy period or its derivatives by iteration and then invert them back into the time domain.

Specifically note the recursive definition for the Laplace transform of the busy period,

G∗(s). This structure is preserved even when one of the processes involved is quasi-birth-

death [33] in nature and most known solution approaches revolve around solving for this

transform (or a matrix transform thereof) using numerical techniques.

1.4 Literature Survey

For anM/M/1 system, the probabilities forn customers being served during a

normal busy period are known, see for example Takács [40]. Takács also derives the joint

density for the number served and the length of the busy period where either the inter-

arrival times or the service times have an exponential distribution [41]. More recently, Ny

and Sericola [37] study the busy period distribution of theBMAP/PH/1queue based on

an approximation of the exponential of an infinite sizedQ matrix using uniformization
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and truncation. Lucantoni et al. consider the transient BMAP/G/1 queue [32], [33] and

derive the two dimensional transform for the joint distribution for the number served in a

busy period and its length, which are numerically inverted [9].

There is extensive literature studying the tail of the busy period, especially for the

M/M/1 queue [2]. One of the observations in that paper is thatthe tail distributions of busy

periods are sub-exponential, which are often hard to model.Boxma and Dumas [8] relate

the tail behavior of the active periods of the input sources to the tail of the busy period

distribution of a GI/G/1 queue. Asmussen and Bladt [7] use the sample path approach

to study the mean busy periods for Markov modulated queues. The probabilities forn

customers served during a busy period of aGI/M/1/Nqueue is studied by Agarwal [5] by

splitting up the sample paths at suitable renewal epochs. Heindl and Telek [11] studied

the busy period of aMAP/PH/1system. Osogami and Harchol - Balter [29] study the

necessary and sufficient conditions to represent a general process as a Coxian distribution

and as an application show that the number of stages which suffice for a busy period dura-

tion to be well-represented by a Coxian are solely determined by the service distribution

of the first job in the busy period. In [30], Akar and Sohraby present a novel algorithmic

approach to compute the stationary probability distribution of finite QDB chains using

a hybrid of matrix geometric and invariant subspace methods. Lipsky studied first pas-

sage times in renewalME/ME/1queues extensively and uses recurrence relations for their

solutions [14].

Existing literature on busy periods usually requires either the arrival process or

the service process (or both) to be renewal and most proceed by studying the embed-

ded Markov chain at the resulting renewal instants. These techniques are not extendible
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to MEP/MEPsystems as there are no such renewal points available. Furthermore, most

existing work rely heavily on transform solutions and involve numerical inversions. In

this paper we allow both the arrival and the service processes to be non-renewal and se-

rially correlated. This allows us to study the effect of correlation in both the arrival and

service processes on busy periods and related performance metrics. We use a combina-

torial approach that is analytic and the solutions are obtained using closed form recursive

expressions that are computed using dynamic programming approach.

1.5 Dissertation Structure

In Chapter 2, we give an overview of matrix exponential distributions, including a

list of common distributions with their matrix exponentialrepresentations. We also give

a review of matrix exponential processes that allows us to represent processes which can

be serially correlated and present some examples of matrix exponential processes and

present a brief overview of product (hat) spaces.

In Chapter 3, we study the probability thatn customers are served during the busy

period of anMEP/MEP/1system, where both the arrival and the service processes canbe

serially correlated Matrix Exponential Processes. A dynamic programming algorithm is

given to compute the probabilities for servingn customers in a busy period and expres-

sions for the first two moments are derived. We study both the effect of correlation in the

arrival and service processes and the squared coefficient ofvariation on these probabili-

ties. The solutions give us qualitative insights into the nature of the busy period of the

MEP/MEP/1system. The resulting algorithms are easily programmable using dynamic

programming techniques.
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In Chapter 4, we first characterize the conditionalmin of two matrix exponential

processes as a matrix exponential process and use that representation to construct the

distribution functions and Laplace transforms for the timeit takes to traverse any given

sample path. We then use these individual sample path lengthrepresentations to derive the

Laplace transform for the entire busy period length and derive expressions to compute the

mean busy period length. In the later half of this chapter, westudy how the correlations

in arrival and service processes effect the mean first passage time when we now consider

a generic first passage from various starting levels. We thencompute some busy period

related performance metrics for various arrival and service processes.

In Chapter 5, we present an analysis of busy periods of finiteMEP/MEP/1queues.

We study how the moments and auto correlations in the arrivaland service processes affect

the busy period for these finite queues. Due to the restrictions presented by the finite queue

boundaries and the effect of the boundary on the state transitions leading to the boundary,

certain queueing studies, including the busy period analysis, are more intricate for the

finite system as compared to their infinite counterparts. We derive the corresponding

matrix quadratic equations for finite case and draw attention to the (dis)similarities to

the matrix quadratic equation in relation to the infinite queueing situation and provide

numerical examples.

In Chapter 6, we offer some concluding remarks as well as somedirections for

future work.
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CHAPTER 2

MATRIX EXPONENTIAL PROCESS

2.1 Matrix Exponentials

A matrix exponential (ME) distribution [14] is a probability distribution function

represented by the tuple< p, B, e′ > wherep is the starting operator for the process,B

is the process rate operator, and the vectore′ is a summing operator usually consisting of

all ones. The density and the cumulative distribution functions are given by

f(t) = p exp (−Bt) Be′, t ≥ 0, (2.1.1)

F (t) = 1 − p exp (−Bt) e′, t ≥ 0. (2.1.2)

The power moments of a matrix exponential distribution are given by

E[Xn] =

∫
∞

0

ti dF (t) = n! pV ne′, (2.1.3)

whereV = B−1. The matrixV is also known as the process time operator.

The Laplace-Stieltjes transform of a matrix exponential distribution is given by

F ∗(s) =

∫
∞

0

exp (−s t)p exp (−B t)Be′dt = p (sI + B)−1
Be′. (2.1.4)

The class of matrix exponential distributions is identicalto the class of distributions

that possess a rational Laplace-Stieltjes transform, i.e., all distributions that have a ratio-

nal Laplace-Stieltjes transform can be represented as a matrix exponential distribution.

Distributions that do not have a rational Laplace-Stieltjes transform can be closely ap-

proximated by distributions having rational Laplace-Stieltjes transform (see [31]). These

14



representations need not be unique. If< p, B, e > is a matrix exponential represen-

tation of a distributionF , then< pX−1, XBX−1, Xe > is also a matrix exponential

representation ofF , whereX is a non-singular matrix.

For any given rational Laplace-Stieltjes transform the problem of when there exists

a corresponding matrix exponential distribution was addressed by Fackrell [17]. Given a

sequence of moments of a distribution the problem of when is it a matrix exponential

distribution of finite degree was addressed by Van de Liefvoort [27], who also proposed

an algorithm for constructing a minimal matrix exponentialrepresentation.

The class of matrix exponential distributions have representations that closely re-

semble the phase-type distributions, which have an additional requirement thatp andB

are probabilistically interpretable. Below are some examples of matrix exponential distri-

butions

• Exponential Distribution

The density functionf(t) and the Laplace-Stieltjes transformF ∗(s) of an exponen-

tial distribution

f(t) = exp(−λ t) λ, F ∗(s) =
λ

λ + s
. (2.1.5)

A matrix exponential representation is

p = [1] , B = [λ] , e′ = [1] . (2.1.6)

• Erlang Distribution

A k-stage Erlang distribution where the time spent in each stage is exponentially

distributed with the rateλ is presented in Fig. 2.1 whose density functionf(t) and
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Figure 2:k-Stage Erlang Distribution

its corresponding Laplace-Stieltjes transformF ∗(s) are given by

f(t) =
exp(−λ t) λk tk−1

k!
, F ∗(s) =

(
λ

λ+s

)k
. (2.1.7)

A matrix exponential representation is

p =
[

1 0 0 · · · 0
]
, B =




λ −λ 0 · · · 0

0 λ −λ · · · 0

0 0 λ
. . . 0

...
...

. .. . . .
...

0 0 0 · · · λ




, e′ =




1

1
...

1




.

• Hyper-Exponential Distribution

A k-stage hyper-exponential distribution where the time spent in stagei is exponen-

tially distributed with the rateλi and the probability of starting in each stage is given

by αi is presented in Fig. 3. The density function of a k-stage hyper-exponential

processf(t) and its corresponding Laplace-Stieltjes transformF ∗(s) are given by

f(t) =
∑

αi exp(−λi t) λi, F ∗(s) =
∑k

i=1 αi
λi

(λi+s)
. (2.1.8)
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Figure 3:k-Stage Hyper-Exponential Distribution

An matrix exponential representation is

p =
[

α1 α2 · · · αk

]
, B =




λ1 0 · · · 0

0 λ2
. . . 0

...
. . . . . .

...

0 0 · · · λk




, e′ =




1

1
...

1




.

• Coxian Distributions

This class of distributions was introduced by Cox [31], who showed that any non-

exponential probability distribution with rational Laplace-Stieltjes transform can be
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represented as a series of exponential stages with possiblycomplex valued transi-

tion rates, and where with some probability the next stage isentered or with com-

plementary probability the process stops. Ak-stage Coxian distribution is presented

in Fig. 4 where the time spent in stagei is exponentially distributed with the rateλi

and the probability of entering that stage isαi, bothλi andαi are possibly complex

valued. The Laplace-Stieltjes transformF ∗(s) of a k-stage Coxian distribution is

given in partial fraction form by

F ∗(s) =

k∑

i=1

αi

i−1∏

j=1

(1 − αi)

i∏

j=1

λj

(s + λj)
. (2.1.9)

1

λ1λ1 λ2 λ3 λk
α1 α2 α3 αk−1

1 − α1 1 − α2 1 − α3 1 − αk−1

Figure 4:k-stage Coxian Distribution

An matrix exponential representation is

p =
[

1 0 0 · · · 0
]
, B =




λ1 −α1 λ1 0 · · · 0

0 λ2 −α2 λ2
. . . 0

0 0 λ3
... 0

...
. . . . . .

...

0 0 · · · 0 λk




, e′ =




1

1
...

1




.

• General Canonical Form from RLT

For any distribution that has a rational Laplace-Stieltjestransform,F ∗(s),

F ∗(s) =
b0 + b1 s + · · · + bm−1 sm−1

a0 + a1 s + · · ·+ am−1 sm−1 + sm
. (2.1.10)
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A matrix exponential representation< p, B, e′ > for this distribution is given in

companion canonical form as

p =
[

b0
a0

(−1)1 b1
a0

· · · (−1)m−2 bm−2

a0
(−1)m−1 bm−1

a0

]
,

B =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . . · · · 0

(−1)m−1a0 (−1)m−2a1 · · · (−1)1am−2 am−1




, e′ =




1

0

0
...

0




.

It is to be noted here that even if a given density function canbe represented as a

phase type, the equivalent canonical form shown above is notand does not have any

phase type interpretations associated. Conversely, some density functions which

cannot be expressed as phase types can still be represented using this canonical

form as a matrix exponential .

• Phase Type Distributions

Neuts [19] introduced the phase type distributions by defining a continuous time

Markov chain with an absorbing state. A phase-type distribution defined by(α̂, T )

is the distribution of time until absorption in a finite-state, continuous-time Markov

process with one absorbing state. The matrixT represents the transitions among

the non absorbing states and the vectorsα̂ is the entry vector giving the probability

distribution of the initial state. A matrix exponential representation is given by

p = α̂; B = −T , e′ =




1

1
...

1




.
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• The following is an example of a distribution that does not have a phase type rep-

resentation. This distribution was introduced in [31] and the density function and

corresponding Laplace-Stieltjes transform are given by

f(t) = 8 µ [sin(µ t)]2 exp(−2µ t), t ≥ 0

F ∗(s) =
16 µ3

(s + 2 µ) (s2 + 4 sµ + 8 µ2)
. (2.1.11)

A matrix exponential representation using only real numbers,

p =
[

1 0 0
]
, B = µ




−1 1 0

−1 −1 2

15 −15 8


 , e′ =




1

1

1


 .

The companion canonical representation is,

p =
[

1 0 0
]
, B =




0 1 0

0 0 1

16 µ3 −16 µ2 6 µ


 e′ =




1

0

0


 .

For other properties of the matrix exponential distributions, see [14] and on methods to

computef(t) see [20].

2.2 Matrix Exponential Process

The matrix exponential process (MEP) is defined by the joint density function of

first k-successive intervals between events where the inter eventtimes are matrix expo-

nentially distributed

f1,2,...,k(x1, . . . , xk) = p(0) exp(−Bx1)L . . . exp(−Bxk)Le′, (2.2.1)

then this describes an matrix exponential process, wherep(0) is the state of the process

at time zero (also referred to as the starting operator), andL is the instantaneous event

generator matrix. The matrixL reflects the rate of transitions between the internal state
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of the process immediately before the event and immediatelyafter the event. The induced

processp(0)Y k, (k = 0, 1, . . . ) describes the sequence of states immediately after the

start of a new interval at event times, whereY = V L. If the process is assumed to be

covariance stationary, then thep(0) is the stationary vector for the process at embedded

event points. Below are examples of some matrix exponentialprocesses.

• Poisson process

In a Poisson process, the intervals between consecutive events are independent and

identically distributed exponential random variables. A Poisson process with the

rateλ has a MEP representation given by

p(0) = [1], B = [λ], L = [λ]. (2.2.2)

• Matrix Exponential Renewal Process

Renewal process defines processes whose inter-event times are independent of each

other. The event generator matrix for renewal process whoseinter-event times are

characterized by matrix exponential distributions is given by

L = Be′p. (2.2.3)

Note that the rank of the matrixL is one for a renewal process.

• Markov Arrival Processes (MAP)

The Markovian Arrival Process (MAP), which is a generalization of the PH distri-

bution was introduced by Neuts [21] to model non Markovian point processes. A

MAP is a non renewal process represented by two matrices (D0, D1) rather than a

matrix and a vector as in the phase type distribution. The matrix D0 is similar to the

T matrix for a PH distribution, which contains the transitions between the transient
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states of the underlying Markov chain. The rows of the matrixD1 describe how

the transient states of the underlying Markov chain are reentered after an absorption

event.The equivalent MEP representation is given by

B = −D0, L = D1. (2.2.4)

The Markov modulated Poisson process (MMPP) is a special case of MAP where

the matrixD1 is diagonal i.e., event transitions do not result in change of state.

The expression for the lag-l covariance, the covariance between the first interval

and the(l + 1)th is

cov[X1, Xl+1] = pV (Y )lV e′ − (pV e′)2, l ≥ 0.

The auto-correlation at lag-l, r[l], can be found by dividing cov[X1, Xl] by the

variance

var[X] = 2pV 2e′ − (pV e′)2.

Note thatB and L are not limited to being Markovian rate matrices, so every MAP

is an MEP, but not vice versa (see also [22]). By implication,stationary MEPs are

dense in the family of all stationary point processes as well, [23]. For additional

details see [14,24–26].

2.3 Concurrent MEP’s and Hat Spaces

It is not unusual that multiple processes each acting on their own operator spaces

act concurrently on a given state. Kronecker product is one way of representing

the embedding (or combining) of these two disjoint operatorspaces, into a bigger
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product space. In general, ifK1 is anm1 ×n1 matrix operating on objects in space

1, andK2 is anm2 × n2 matrix of space 2, the Kronecker product ofK1 andK2,

denoted byK1

⊗
K2, is the matrix of size(m1m2) × (n1n2) that is obtained by

multiplying each element ofK1 by the full matrix,K2.

As a particular example, let an arrival process representedby < pa, Ba, La, ea >

and a service processes represented by< ps, Bs, Ls, es > act concurrently on the

internal state of the system. Using Kronecker products we can construct a product

space which represents the concurrency of these two processby embedding both

the arrivals and services into the product space as follows [14].

êa = ea ⊗ Is, ês = Ia ⊗ es

B̂a = Ba ⊗ Is, B̂s = Ia ⊗ Bs

L̂a = La ⊗ Is, L̂s = Ia ⊗ Ls

êa = ea ⊗ Is, ês = Ia ⊗ es

where,Ia andIs are identity matrices in the arrival and service spaces respectively

and the symbol̂. (called caret or hat) represents a process in the embedded space.

Once the matrices are embedded into the product space, the concurrent process rate

matrix for example is given bŷBa + B̂a.

23



CHAPTER 3

PROBABILITY MASS FUNCTION FOR NUMBER OF CUSTOMERS SERVED

DURING THE BUSY PERIOD OF A CORRELATEDMEP/MEP/1SYSTEM

3.1 Introduction

In this chapter we study the probability thatn customers are served during the

busy period of anMEP/MEP/1system, where both the arrival and the service processes

can be serially correlated Matrix Exponential Processes. Adynamic programming algo-

rithm is given to compute the probabilities for servingn customers in a busy period and

expressions for the first two moments are derived. We study both the effect of correlation

in the arrival and service processes and the squared coefficient of variation on these prob-

abilities. The solutions give us qualitative insights intothe nature of the busy period of the

MEP/MEP/1system. The resulting algorithms are easily programmable using dynamic

programming techniques.

The busy period for a system is the time interval between any two successive idle

periods. It starts when a customer arrives to an empty systemand ends when the departing

customer leaves the system idle for the first time thereafter. In effect, a simple busy period

is equivalent to a first passage from level 1 to level 0. Furthermore, the first passage from

a higher level say ‘l’ to ‘ (l−1)’ is also of interest. Here, if we letl−1 denote a threshold,

we are interested in the transient behavior around this threshold.

DefineDl,l−1 as the first passage process wherein the system transitions from level

l to level l − 1 ending when levell − 1 is reached for the first time. In this chapter we
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derive recursive solutions to find the probability for serving ‘n’ customers during this first

passage in anMEP/MEP/1queueing system, and we derive moments for the number of

customers served during this first passage. We then specialize the solutions obtained to

the case of a busy period and study the effect of correlation in the arrival and service

processes and the squared coefficient of variance on these probabilities.

3.2 Model Description

3.2.1 QBDProcesses

A finite QBD process is a Markov process with infinitesimal generatorQ̃ [36],

given by

Q̃ =




B0 A0

B1 A1 A0

A2 A1 A0

. . . . . . . ..

A2 A1 C0

A2 C1




. (3.2.1)

Define the embedding operatorsHa reflecting an arrival event occurring before the ser-

vice andHs representing a service event occurring before the arrival map into theQBD

space as follows:

Ha = (A1)
−1A0, (3.2.2)

Hs = (A1)
−1A2. (3.2.3)

TheseH operators allow us to track the path evolution by embedding at the event transi-

tions in the continuous time Markov chain. At each observed transition point, the appro-

priateH-operator is applied (and normalized if needed) to update the internal state of the
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discrete time Markov chain, thus allowing both the arrival and service processes involved

to be non-renewal.

The conditional probability that an arrival event (r.v.A) occurs before the service

event (r.v.S), given that the starting vector isp(0) is given by

Pr[ A < S | p(0)] = p(0)Hae
′. (3.2.4)

where the trailinge′ sums up the probabilities distributed in vector form and is usually a

column vector of all one’s of appropriate dimensions.

In a QBD system, the conditional probability that two successive events are both

arrivals, given that the process starts inp(0) is

p(0)(Ha)
2e′. (3.2.5)

The corresponding discrete-time QBD process is governed by

P̃ =




0 H1

H3 0 Ha

Hs 0 Ha

. . . . . . . . .

Hs 0 H2

H4 0




, (3.2.6)

whereH1 = (B0)
−1A0,H2 = (A1)

−1C0,H3 = (A1)
−1B1, andH4 = (C1)

−1A2.

In the particular systems that we study here will haveH3 = Hs reflecting that

the service process is suspended if no customers are present, without effecting the internal

state. Also, in our case,H4 = (I − Ha)
−1Hs.
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3.2.2 H Operators

Let the arrival and service processes be represented by< Ba, La > and< Bs, Ls >

respectively and letA andS represent the corresponding random variables. The con-

ditional probability that an arrival event occurs before the service event given that the

starting vector isp(0) is given by

Pr[ A < S | p(0)] = p(0)(B̂a + B̂s)
−1L̂ae

′.

whereB̂a = Ba ⊗ Is , B̂s = Ia ⊗ Bs , L̂a = La ⊗ Is andL̂s = Ia ⊗ Ls, and⊗

is the Kronecker product operator which embeds the arrival and service processes into

system space. Here,(B̂a + B̂s)
−1 represents the average time that both the arrival and

service processes are concurrently active, andL̂a represents the arrival event occurring.

The trailinge′ sums up the probabilities distributed in vector form and is usually a column

vector of all one’s of appropriate dimensions.

In anMEP/MEP/1system, the conditional probability that two successive events

are both arrivals given the system starts in statep(0) is p(0)(B̂a + B̂s)
−1L̂a · (B̂a +

B̂s)
−1L̂ae

′. The operatorsHa for arrival event happening before the service andHs for

service event happening before the arrival are given by unconditioning on the initial state

of the system.

Ha = (B̂a + B̂s)
−1L̂a and Hs = (B̂a + B̂s)

−1L̂s.

Essentially theseH operators allow us to track the path evolution by considering

event transitions embedded in the continuous time Markov chain. At each observed tran-

sition point, the appropriateH operator is applied (and normalized if needed) to update

the internal state of the discrete time Markov chain, thus allowing both the arrival and

27



service processes involved to be non-renewal. We summarizewhatHa andHs are for

different systems in the Table. 1.

Ha Hs

M/M/1 λ
λ+µ

µ
λ+µ

M/ME/1 (λI + Bs)
−1λ (λI + Bs)

−1Bse
′

sps

ME/M/1 (Ba + µI)−1Bae
′

apa (Ba + µI)−1µ

MEP/MEP/1 (B̂a + B̂s)
−1L̂a (B̂a + B̂s)

−1L̂s

Table 1:H operators for different systems

Please note that theH operators introduced here differ from the similarly named

operators in [14].

3.3 Conditional Sample Path Analysis of First Passages in an MEP/MEP/1 System

Consider a system that just had a transition from level(l−1) to levell and letp(l)

be the current internal state of the system. The events that drive the Markov chain repre-

senting this system are either an arrival (Ha) or a service completion (Hs). As defined

earlier, letDl,l−1 represent the first passage process wherein the system transitions from

level l to level l − 1 ending when levell − 1 is reached for the first time. Every sample

path that belongs to the processDl,l−1 can be represented by a succession ofHa’s and

Hs’s. To compute the probability of occurrence for each of these sample paths we have

to pre and post multiply theH operator string withp(l) ande′ respectively.
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Figure 5: Paths serving exactly 3 customers during the first passage,Dl,l−1

The number of possibilities to serve exactlyn customers during this first passage is

given byCn−1, the(n − 1)st Catalan number [39]. Thenth Catalan numberCn is com-

puted either as 1
n+1

(
2n
n

)
, n ≥ 0, or from the recursive definition for Catalan numbers

Cn =
∑n−1

i=0 CiCn−i−1, C0 = C1 = 1, by using dynamic programming techniques. For

example, exactly three customers can be served during a firstpassage from levell to level

l − 1 by following one of the two paths shown in Fig. 5 and the probabilities associated

with each of those paths arep(l)HaHsHaHsHse
′ andp(l)HaHaHsHsHse

′ respec-

tively. In theM/M/1 case these two paths would be equi-probable with a probability of

λ2µ3

(λ+µ)5
and hence the probability for exactly three customers beingserved duringDl,l−1 is

given by 2λ2µ3

(λ+µ)5
.

A busy period is a special case of this first passage whenl = 1. Let Nl,l−1 be

the discrete random variable for the number of customers served during the first passage

Dl,l−1. Hence, in anM/M/1 system,

dn,1 , Prob[N1,0 = n ] = Cn−1
λn−1µn

(λ + µ)2n−1
, n ≥ 1.

In the case of aMEP/MEP/1system, the matrices involved are generally non-

commutative (HaHs 6= HsHa) and the paths have different probabilities associated

with them. The relationship among these different paths that serve a given number of
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customers during this first passage leads us to define a set of recurrence relations for these

probability matrices, resulting in a direct generalization of the recursive definition for

scalar Catalan numbers to matrices.

............

p(0)p(0) p(0)

Y
n−2

Y
n−2

Ha

Ha Ha

Hs

Hs

Hs

Hs

Hs

Hs

Y
n−3 Y0

Y0

Y1

Figure 6: Paths serving exactlyn customers during the first passage,Dl,l−1

If Nl,l−1 = 1, then the first arrival that started the process is followed by a depar-

ture; the probability of this occurring isp(l)Hse
′. In all the other cases, at least one more

arrival (Ha) occurs before the first departure (Hs). We consider the remaining process

(after the second arrival), as two sub processes, wherek1, k1 ≥ 0 customers are serviced

before returning to levell for the first time followed byk2 customers served before finally

returning to levell − 1 (See Fig. 6). In this respect, each of these sub-paths is similar to a

Dyck path [38]. Thus exactlyn customers can be served during this first passage (Dl,l−1)

by servingn − i (k1 = n − i) customers before returning to levell for the first time,

followed by servingi − 1 (k2 = i − 1) customers before the last customer departs the

system, followed by the final departure event returning the system to levell − 1 for the

first time.

The above insight and explicit enumeration of all the possible paths for a few

cases allows us to define the following set of recurrence relations. Please note that these

derivations are independent of the current state of the system (as long as the server is

active). Let,
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Y 0 = I,

Y 1 = HaY 0HsY 0,

Y 2 = HaY 1HsY 0 + HaY 0HsY 1,
...

Y n−1 = Ha [Y n−2HsY 0 + Y n−3HsY 1 + . . . + Y 0HsY n−2],

Y n = Ha [Y n−1HsY 0 + Y n−2HsY 1 + . . . + Y 0HsY n−1] .

whereI is an identity matrix of the dimensions of either the serviceprocess or the arrival

process whichever is anMEP and it would be in the product space if both of these are

MEPs. Y i is the operator that transfers the internal state of the system as the system

transitions from levell back to levell while traversing only statesl, l + 1, l + 2, . . . and

after having served exactlyi customers. Here,Y i is independent of the levell, as all

the information that differentiates transitions for different levels is present in the system

starting vector on whichY i operates, andY i depends only on the number of arrivals and

departures. Furthermore, the operatorY iHs represents serving exactly(i+1) customers

while transitioning down by one level. In short

Y 0 = I,

Y n−1 =
n−2∑

i=0

HaY n−i−2HsY i, n > 1.

Please note the similarity between the above definition forY n−1 and the recursive

definition for Catalan numbers. Indeed, if one would unravelthe recurrence relation, there

would beCn−1 terms in the expression forY n−1. Also note that the definition forY n−1 is
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order preserving and hence the correlation that is present in the arrival and service events

are effectively captured therein.

Now the probability that exactlyn customers are served duringDl,l−1 conditioned

on the internal system state being inp(l) at the transition from levell−1 to levell is given

by,

dn,l , Prob[Nl,l−1 = n ] = p(l)Y n−1Hse
′, n ≥ 1.

wheree′ is a column vector of all 1’s whose dimensions depend on whether the system is

anM/M/1, M/MEP/1, MEP/M/1or anMEP/MEP/1. For theM/MEP/1andMEP/M/1, its

dimension corresponds to either the service processes or the arrival processes dimension

respectively, and for anMEP/MEP/1systeme′ is in the product space given bye′ = ê′

ae
′

s,

whereê′

a = e′

a ⊗ Is. We show the computation of the starting vector for a normal busy

period in section (3.4) and the starting vector for a higher level first passage in Chapter(4).

3.3.1 Moments for The Number of Customers Served DuringDl,l−1

The z-transform for the number of customers served during this first passage

Dl,l−1 is

y(z) =
∞∑

n=1

Prob[Nl,l−1 = n].zn = b1z + b2z
2 + . . .

SinceY n−1 forms the core ofdn,l, one can define the matrixz-transformY (z) =

Y 0z
1 + Y 1z

2 + Y 2z
3 + . . ..

From the definition ofY n one arrives at the matrix quadratic form forY (z) as
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follows:

z1Y 0 = Iz1

z2Y 1 = (HaY 0z
1HsY 0z

1)

z3Y 2 = (HaY 1z
2HsY 0z

1 + HaY 0z
1HsY 1z

2)

... =
...

zn+1Y n = (Ha[Y n−1z
nHsY 0z

1 + Y n−2z
n−1HsY 1z

2 + . . . + Y 0z
1HsY n−1z

n])

Y (z) = zI + Ha(Y 0z
1 + Y 1z

2 + Y 2z
3 + . . .)Hs(Y 0z

1 + Y 1z
2 + Y 2z

3 + . . .)

Thus,Y (z) satisfies the matrix quadratic equation

Y (z) = zI + HaY (z)HsY (z). (3.3.1)

This matrix quadratic form forY (z) (equation (3.3.1)) is closely related to the

common matrix quadratic equation for the matrixG that occurs in literature [33], [35].

In fact, “Y (1)Hs” is equivalent to the matrixG if the system under consideration has

MAP processes, andY (1)Hs extends the functionality ofG to our current more gen-

eral situation. The current derivation is a combinatorial approach and implemented with

dynamic programming techniques to keep the computational costs in control. Also, the

matrixY is constructed from the individual components as a limitingprocess which gives

us qualitative insights into the recursive structure of thebusy period.

Taking the derivative ofY (z) in equation (3.3.1),

Y ′(z) = I + HaY
′(z)HsY (z) + HaY (z)HsY

′(z),
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and evaluating at z=1, gives

Y ′(1) = I + HaY
′(1)HsY (1) + HaY (1)HsY

′(1), (3.3.2)

HereY (1) should be directly computed from its individual componentsas a lim-

iting process. Alternatively, if the busy period is known tobe recurrent (ρ < 1), thenY

can be computed by a fixed point iteration on thez-transform equation forY (z) atz = 1.

Empirical studies show that this fixed point iteration does converge when the busy period

is recurrent, and a proof will be shown in future work.

Similarly, we can computeY ′(1) either by iteration on equation (3.3.2) or as a

limiting process. The mean number served during this conditional first passage is given

by

E[Nl,l−1] = p(l)Y ′(1)Hse
′. (3.3.3)

Similarly, the second moment is computed as,

E[N2
l,l−1] = p(l)Y ′′(1)Hse

′ + p(l)Y ′(1)Hse
′. (3.3.4)

whereY ′′(1) is computed either as a limiting process or by iteration on

Y ′′(1) = HaY
′′(1)HsY + 2HaY

′(1)HsY
′(1)

+HaY HsY
′′(1).

If the H ′s are of sizem by mthen the computation ofY n would take3n matrix

multiplications andn matrix summations. Hence the time complexity is of orderO(m3n),

which is computationally manageable, especially since thematrix dimensions do not grow

with path lengths. The matrixY can be obtained by iteration on the z-transform equations
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usingO(m3) computations per iteration. Also the space complexity for computingY is

of orderO(m3n).

3.4 Number of Customers Served in Busy Periods of an MEP/MEP/1 System

As mentioned in the previous section, the busy period is a special case of the first

passage processDl,l−1 when l = 1. Let the internal state of the system at the start of a

busy period be represented bypbp. Assuming that the utilization of the system is less than

one (ρ < 1) and hence that a busy period always ends, this starting vector (pbp) is the

normalized invariance vector for the start of a random busy period and is the solution to

the following equation

pbpY HsV aLa = pbp.

i.e., pbp is the normalized left eigenvector corresponding to an eigenvalue of 1 for the

matrixY HsV aLa. The intuition is that if the process starts inpbp at the start of a random

busy period, its value at the start of the next busy period is given by traversing one of the

possible pathspbpY , followed by the final departureHs (back to state zero), after which

only the arrival process is active until the next arrival event V aLa, thus starting the next

busy period.

Once the starting vector for a busy period is known, the expressions for Prob[N1,0 =

n] and E[N1,0] follow directly from the results in the previous section. Hence, the proba-

bility that exactlyn customers are served during a busy period is given by,

dn,1 = Prob[N1,0 = n ] = pbpY n−1Hse
′, n ≥ 1,
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and mean number of customers served during a busy period is

E[N1,0] = pbpY
′(1)Hse

′.

We summarize the procedure to compute these metrics in Algorithm 1.

Algorithm 1 To compute Prob[N1,0 = n] and mean for the number served during busy
period of aMEP/MEP/1system

1: SetupHa andHs from the arrival and service process representations.
2: ComputeY by a fixed point iteration on

Y = I + HaY HsY ,

using,Y (0) = I

Y (i) = (I + HaY
(i−1)HsY

(i−1)), i > 0.

Alternately,Y can be computed as a limiting process from the summation of individualY ′

ns.
3: Findpbp, the left eigenvector corresponding to an eigenvalue of 1 for Y HsV aLa.
4: To compute Prob[N1,0 = n]:

• ComputeY n−1 using,Y 0 = I,

Y n−1 =

n−2∑

i=0

HaY n−i−2HsY i n > 1

• Probability that exactlyn customers are served in a busy period is

Prob[N1,0 = n ] = pbpY n−1Hse
′, n ≥ 1.

5: To compute the mean number served in a busy period:
• FindY ′(1) using fixed point iteration on

Y ′(1) = I + HaY
′(1)HsY + HaY HsY

′(1).

• Mean for number served is given by,

E[N1,0] = pbpY
′(1)Hse

′.
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3.5 Numerical Results

Using the general derivation for theMEP/MEP/1system presented above, we

compare our results to existing solutions for the number served during the busy period

for anM/M/1 and anM/D/1 system. We then compare and validate our analytical results

with trace driven simulations forM/MEP/1, MEP/M/1andMEP/MEP/1systems. Finally,

we perform parametric studies on anMEP/MEP/1system using our analytical solutions.

3.5.1 Comparison to M/M/1 and M/D/1:

For theM/M/1 case, the probabilities thatn + 1 customers are served in a busy

period is given by [40]

Prob[Nb = n + 1] =
1

n + 1

(
2n

n

)
λnµn+1

(λ + µ)2n+1
, n ≥ 0,

where the combinatorial multiplier is thenth Catalan number.

The mean number served and the variance for number served in thisM/M/1 system

busy period are given by

E(N) =
1

1 − ρ

andV ar(N) =
ρ(1 + ρ)

(1 − ρ)3
.

Our results match exactly with this closed form solution and, as we mentioned in Section

3, we consider our derivation as a generalization of Catalannumbers for matrices.

A closed form explicit result is known when the service distribution is determin-

istic, anM/D/1 system [10]. In this case, the probability ofn number of customers served
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in a busy period (fn) is given by the Borel distribution

fn =
1

n

(λτn)n−1

(n − 1)!
e−λτn, n ≥ 1.

Consider now the ME density with representation

< p5, B5, e5 >, where

p5 =

[
1 3

10
7

160
1

400
1

7680

]

B5 =




0 3
2 0 0 0

0 0 3
2 0 0

0 0 0 3
2 0

0 0 0 0 3
2

480 −576 300 −90 15




e5 =

[
1 0 0 0 0

]
.

This ME form represents the function

f(t) =
1

960
(12939 − 14896 cos (3 t) − 9504 sin (3 t)

+2017 cos (6 t) + 4344 sin (6 t))e−3 t

The aboveME is an example of a distribution that is not also of a Phase typebecause the

density is equal to zero for various values of t as can be seen in fig.7. This distribution has

a mean of 1 andc2 of 1
12

. The ten fold convolution of this density has a mean of 1.0 anda

squared coefficient of variation (c2) of 0.004, and is used to approximate a deterministic

distribution. With thisME as the service process representation and with a Poisson arrival

stream with a mean rateλ = 0.8, we get the probabilities shown in Table 2. Please note

that even with the approximation to the deterministic distribution, the results are very
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Figure 7: ME Density that touches the x-axis multiple times

Table 2: M/D/1 Comparison, Utilization = 0.8
n Borel distribution Our Result

Prob[N1,0 = n] Prob[N1,0 = n]

1 0.4493289641 0.449926477600
2 0.1615172144 0.161409917100
3 0.08708923515 0.086978314120
4 0.05565399583 0.055568460030
5 0.03907336297 0.03900843250

close to the known Borel distribution.

3.5.2 MAP/MAP/1 System

SinceMAP’s form a subset of theMEP’s, we can compute these probabilities

(Prob[N1,0 = n]) for a MAP/MAP/1system. Consider aMAP/MAP/1system where the
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arrival is represented by

D0 =




−7.1041 0

0 −0.3959


 , D1 =




6.9916 0.1125

0.1125 0.2834


 ,

and the service process is represented by the rate matrices

D0 =




−9.4721 0

0 −0.5279


 , D1 =




9.3221 0.15

0.15 0.3778


 .

This is equivalent to anMEP/MEP/1system where for both the arrival and service

processes theB’s andL’s can be derived from the correspondingD0’s andD1’s, i.e.,

from the arrival processD’s we can get,Ba = −D0, La = D1, and from the service

processD’s we get,Bs = −D0, Ls = D1 respectively. This system has a utilization

of 0.75 with a correlation decay parameter of 0.7 andc2 of 9.0 for both the arrival and

service processes. The corresponding probabilities are shown in Table 3.

Table 3: MAP/MAP/1 System, Utilization = 0.75
n Prob[N1,0 = n]

1 0.63060456
2 0.12076481
3 0.05671077
4 0.03417086
5 0.02313089

n > 5 0.13461808
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3.5.3 Simulation Results

For simulations, we generate traces using an ME process thatis correlated. For

this purpose, we use a hyper-exponential distribution withstarting vector (p), where the

rate matrix (B) is adjusted for the requiredc2 (squared coefficient of variation) and the

event transition matrixL is adjusted to control the correlation decay. It has theME rep-

resentation

p =
[

p1 1 − p1

]
, B = λ

[
2p1 0

0 2(1 − p1)

]
, L = Be′p,

wherep1 = 1
2

+ 1
2

√
c2−1
c2+1

. This process is uncorrelated. In order to construct correlated

processes with geometrically decaying covariances that share the same marginals, we use

the approach presented in [34]. DefineL(γ) for −1 < γ < 1 as

Lγ = (1 − γ)(Be′p − B) + B. (3.5.1)

TheL(γ) thus constructed introduces geometrically decaying correlations in the process,

while leaving the marginals (and therefore thec2) invariant.

3.5.3.1 M/MEP/1 System

For anM/MEP/1system, the effect of increasing thec2 on the probabilities forn

customers being served during a busy period while keepingγ (correlation decay param-

eter) at 0.99 is shown in Table 4. As can be seen from the table,the simulation results

follow the analytic results closely. As thec2 of the service process increases, there will

be many requests with short service demands (compared to interarrival times), hence in-

creasing the count of busy periods in which fewer customers are served. However, there

will also be arrivals that have longer service demands, but since they are correlated, they
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tend to cause fewer very long busy periods, hence not contributing significantly to the

count of busy periods.

Table 4: Simulation vs Analytical for M/MEP/1, Utilization= 0.75
c2 = 1 c2 = 9 c2 = 100

Analytical Simulation Analytical Simulation Analytical Simulation
n Prob[Nb = n]

1 0.571428571 0.57117927 0.715999851 0.71601889 0.726246184 0.72640603
2 0.139941691 0.139843148 0.145404403 0.14564553 0.144367891 0.144379278
3 0.068542869 0.068994283 0.059055301 0.059103117 0.057396756 0.057232489
4 0.041965022 0.042159178 0.029981189 0.029880241 0.028524242 0.028464697
5 0.028776015 0.028677701 0.017047444 0.016780497 0.015876653 0.015988375
6 0.021141562 0.021184264 0.010385734 0.010434037 0.009468192 0.009456229
7 0.016272223 0.016016045 0.006628639 0.006665474 0.005915325 0.005884958
8 0.012951361 0.013016432 0.004374999 0.004417871 0.003821632 0.003816901
9 0.01057254 0.01059373 0.002961674 0.002941219 0.002532298 0.002588751
10 0.008803257 0.008900555 0.00204508 0.002003509 0.001711516 0.0017103

3.5.3.2 MEP/M/1 System

As can be seen in Fig. 8, as thec2 of the arrival process increases, the probability

for only one customer served in a busy period decreases. In other words, the number of

busy periods serving one customer is decreasing.

The effect of increasing thec2 of the arrival process in a correlated vs non-correlated

(MEP/M/1 vs ME/M/1)system is interesting to note (See Fig. 9). When thec2 is increasing

for the non-correlated case, the number of busy periods where fewer than five customers

are served decreases and the busy periods with more number ofcustomers served gradu-

ally increases, hence the probability for one customer served in a busy period decreases

(Prob[Nb = 1] = 0.404 for ac2 = 100 andγ = 0). On the other hand, when the arrival pro-

cess is highly correlated, there are a few busy periods that are extremely long and there are
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Figure 8:MEP/M/1: Effect of increasingc2 in uncorrelated case

fewer busy periods where only one customer is served (as compared to the normalM/M/1

case). Because of these extremely long busy periods and a decrease in total busy period

count, the probability that only one customer is served increases (Prob[Nb = 1] = 0.974 for

a c2 = 100 andγ = 0.99), even though the absolute count of busy periods where exactly

one customer is served decreases. Also notice from Fig. 9 that in all the three cases for

variousc2 values, the probabilities for one customer served in correlated case tend to be

segregated and very different than the probabilities in theuncorrelated case.

3.5.4 Parametric Studies Using theMEP/MEP/1Model

In this section we show how the values ofc2 andγ affect the system under study.

For this purpose we use the general derivation used for theMEP/MEP/1system. With

γ fixed at 0.99 for both the arrival and service processes, we increase the value ofc2 for

both the processes from 4 to 100 while keeping the system utilization at 0.75. Ac2 of 100
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Figure 9:MEP/M/1: Effect of correlation on Prob[Nb = n]

andγ of 0.99 represents a system where the arrivals and service demands are both very

erratic and correlated (bursty). Fig. 10 represents this effect.

It should be noted that the probability density for the number served for a highly

correlated and variantMEP/MEP/1system matches very closely with a simpleM/M/1

system. For example, the probability for serving exactly one customer has a value of

0.712 for ac2 of 4 and goes down to 0.580 when thec2 is 100, which is very close to that

in anM/M/1 system, 0.571. This result is quite counterintuitive, since we would expect

the busy periods of a highly correlatedMEP/MEP/1system to be somewhat different than

that of anM/M/1 system. Note however that only the relative count of busy periods that

serven customers stays the same. Thec2 for number served during a busy period however

changes from 5.25 for anM/M/1 system to 210 for anMEP/MEP/1system. Hence in an

MEP/MEP/1system, there are some busy periods that are extremely long even though the

averages look similar to anM/M/1 system.
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Figure 10:MEP/MEP/1: Effect of increasingc2

3.5.4.1 Effect of Third Moment on MEP(r1, r2, r3, γ)/M/1 Queue Busy Period

Consider a queue where the marginals of the arrival process are characterized

by the first three reduced moments and the correlation decay parameterγ, of the arrival

processes. We use this characterization so that the impact of the third-moment on the

expected length of the busy periods can be studied. Such an arrival distribution can be

represented in LAQT with the moment canonical form [44]

pa =
[

1 0
]
, B−1

a =



 r1 r1

r2−r2
1

r1

r3−2r1r2+r3
1

r2−r2
1



 , e′

a =

[
1

0

]
. (3.5.2)

The bounds on the first 3 moments are given by Table 5 which is reproduced from [20].

The bounds on the value of the correlation parameterγ for fixed first three mo-

ments can be found in [20]. Let the mean service rate be definedby µ. In this case we

assume the first reduced moment of the arrival process is normalized to 1 andr2 is set to

3. Plots. 11, 12 and 13 show the effect of the third moment on the mean length of busy
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Table 5: Bounds for the First Three Normalized Moments of ME(2) Distributions
r1 > 0

hypoexponential hyperexponential
3
4
r2
1 ≤ r2 < r2

1 r2
1 < r2

(⇒ h2 < 0) (⇔ 0 < h2)

r1(2h2 + r2) + 2(−h2)
3
2 ≤ r3

r2
2

r1
< r3

r3 ≤ r1(h2 + r2) (⇔ 0 < h3)
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Figure 11:MEP(r1,r2,r3,γa)/MEP/1: Effect of Third moment, Util:0.55

periods as the utilizations and the correlation decay parameterγ are varied. A noticeable

observation is the effect of the third moment atγa above 0.7. As the third moment de-

creases from 100 to 10, the mean busy period length increasesuntil r3 reaches a certain

critical value and decreases for further decrease inr3. This effect tends to be present at all

higher utilizations and the criticalr3 value tends to move higher as utilization increases.
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Figure 12:MEP(r1,r2,r3,γa)/MEP/1: Effect of Third moment, Util:0.83

3.6 Summary

In this chapter we derived closed form recursive solutions to compute the prob-

ability density forn customers served during the first passage,Dl,l−1, in a correlated

MEP/MEP/1system. These conditional first passages provide us with tools to study sim-

ilar first passages starting from a random or an environment-defined starting vector. We

then analyzed the busy period of aMEP/MEP/1queue as a special case of these first pas-

sages and studied how these performance metrics are affected by the correlation in arrival

and service processes. This approach to the busy period gives us qualitative insight into its

structure and lays a general framework to analyze other transient system properties. The

algorithms developed are easily programmable using dynamic programming techniques

and can be incorporated into real life performance analysistools.

47



 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9  10  20  30  40  50  60  70  80  90  100

 0
 50

 100
 150
 200
 250
 300
 350

E[b]             

Effect of Third moment on Busy Period

’Util  -  0.9.txt’
’Util  -  0.99.txt’

r3

E[b]             

γa

Figure 13:MEP(r1,r2,r3,γa)/MEP/1: Effect of Third moment, Util:0.9, 0.99
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CHAPTER 4

BUSY PERIOD LENGTH AND HIGHER LEVEL FIRST PASSAGES

4.1 Introduction

In this chapter we first characterize the conditionalmin of two matrix exponential

processes as a matrix exponential process and use that representation to construct the

distribution functions and Laplace transforms for the timeit takes to traverse any given

sample path. We use these individual sample path length representations to derive the

Laplace transform for the entire busy period length and derive expressions to compute the

mean busy period length. In the later half of this chapter, westudy how the correlations in

arrival and service processes effect the mean first passage time when we now consider a

generic first passage from levell to a levell − 1 for various values ofl (as opposed to the

transition from level 1 to level 0). We then compute the probabilities that the sample paths

are of height greater than a given threshold during a given first passage and also compute

and compare the moments for number served and the mean time for the first passage for

various levels against the same performance metrics for a normal busy period for various

arrival and service processes.

4.2 Conditional Density for the min(A,S) Process

Consider two contesting processes, A and S (representing Arrivals and Service

completions), both represented by the corrosponding matrix exponential notations< pa, Ba, ea >
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and< ps, Bs, es >. Then the conditional density for themin process given that the ar-

rival process occurs before the service process is,

Pr[ min(A, S) = t | A < S ] =
Pr[ min(A, S) = t andA < S ]

Pr[ A < S ]

=
pa exp(−Bat)Laeaps exp(−Bst)es

pap̂s(B̂a + B̂s)−1L̂aêaes

= pap̂s exp(−(B̂a + B̂s)t)
L̂a

pap̂s(B̂a + B̂s)−1L̂aêaes

êaes

The expression in the denominator is the probability that anArrival event occurs

before a Service completion and hence is a scalar (less than 1), sayα. The effect of con-

ditioning on the fact that arrival occurs before service event, is that the Arrival processes

gets effectively accelerated (fromLa to La

α
). This in essence is the effect of knowing that

additional piece of information. If we consider this as a newmatrix exponential process,

we no longer have the usual equalityBe = Le since(B̂a + B̂s)êaes 6= La

α
êaes. But

nonetheless this is a valid matrix exponential density. It can easily be seen that the integral

of the above conditional density from0 to∞ equals1.

4.3 ME Representation for The Length of a Sample Path

Consider a sample path during a busy period where immediately after the start

of a busy period, we have an arrival followed by a departure event. The length of this

sample path is the convolution of two stochastic processes,representing the occurence of
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an arrival event followed by a departure event (representedas “AD”).

Pr[“AD” = t1dt1] =

t∫

t1=0

pbp exp(− ̂(Ba + Bs)t1)
La

α1
exp(− ̂(Ba + Bs)(t−t1))

Ls

α2
dt1

(4.3.1)

whereα1 = pbp( ̂Ba + Bs)
−1L̂aêaes = pbpHaêaes andα2 =

p
bp
Ha

p
bp
Ha

ceaes

Hsêaes

The above density of sample path (“AD”) can be written in an matrix exponential

form using the following< ppp, Bpp, Lpp, epp > where,

< ppp, Bpp, Lpp, epp > where,

ppp =
[

pbp 0
]

Bpp =




̂(Ba + Bs)
−La

pbpHa ceaes

0 ̂(Ba + Bs)


 , Lpp =




0 0

0 Ls

pbpHa

pbpHa
deaes

Hs ceaes


 , epp =




1

...

1

êaes




.

The equivalence of the above two forms can be verified by computing the Laplace

transforms of the above two representations. LetF ∗

1 (s) andF ∗

2 (s) represent the Laplace

transforms of the convolution form and the matrix exponential form respectively. The

Laplace transform of the matrix exponential representation, is given by

F ∗

2 (s) = ppp(Bpp + sI)−1Lppe
′

pp. (4.3.2)
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Inverse of a block matrix can be written as,



A B

C D




−1

=




I −A−1B

0 I







A−1 0

0 S−1
A







I 0

−CA−1 I




whereSA, theSchur complement of A is given bySA = D − CA−1B

(Bpp + sI)−1 =




I ( ̂Ba + Bs + sI)−1 La

α1

0 I


 .

.




( ̂Ba + Bs + sI)−1 0

0 ( ̂Ba + Bs + sI)−1







I 0

0 I




=




( ̂Ba + Bs + sI)−1 ( ̂Ba + Bs + sI)−1 La

α1
( ̂Ba + Bs + sI)−1

0 ( ̂Ba + Bs + sI)−1


 .

Hence,

F ∗

2 (s) =

[
pbp( ̂Ba + Bs + sI)−1 pbp( ̂Ba + Bs + sI)−1 La

α1
( ̂Ba + Bs + sI)−1

]
.

.




0 0

0 Ls

α2







1

...

1

êaes




=

[
0 pbp( ̂Ba + Bs + sI)−1 La

α1
( ̂Ba + Bs + sI)−1 Ls

α2

]




1

...

1

êaes




= pbp( ̂Ba + Bs + sI)−1 La

α1
( ̂Ba + Bs + sI)−1 Ls

α2
êaes = F ∗

1 (s)
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Hence both the representations are equivalent, and the shown matrix exponential

representation corresponds to the convolved sample path density. In the next section we

show the matrix exponential form for the sample path ”ADD” (Arrival followed by two

consecutive departures) and compute the conditional Laplace transform which will then

be used to derive the moments of the busy period.

4.4 Conditional Laplace Transform of a Sample Path During a Busy Period

Let us consider all possible paths during which exactly two customers are served

during a busy period. As the busy period starts with the first arriving customer, there is

only one such path possible, another arrival followed by twoconsecutive departures, i.e.,

“A-D-D”. The probability of this path being taken ispbpHaHsHsêaes. The matrix ex-

ponential representation for the length of this busy periodis given by< ppp, Bpp, Lpp, epp >

where,
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ppp =
[

pbp 0 0
]

Bpp =




(B̂a + B̂s)
−L̂a

pbpHaêaes
0

0 (B̂a + B̂s)
−L̂s

pbpHa

pbpHaêaes
Hsêaes

0 0 (B̂a + B̂s)




Lpp =




0 0 0

0 0 0

0 0 L̂s
pbpHaHs

pbpHaHsêaes
Hsêaes




, epp =




1

...

1

êaes




The Laplace transform for this path is given by

F ∗(s) = pbp
F

∗

a(s)

pbpHa ceaes

F
∗

s(s)

pbpHaHs
deaes

pbpHa
deaes

F
∗

s(s)

pbpHaHsHs
deaes

pbpHaHs
deaes

êaes

whereF ∗

a(s) = ( ̂Ba + Bs + sI)−1La andF ∗

s(s) = ( ̂Ba + Bs + sI)−1Ls are

matrices.

The conditional Laplace transform for this path, conditioned by the path“ADD”

being taken (which occurs with a probabilitypbpHaHsHsêaes), is given by,
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F ∗(s | “ADD”) = pbpF
∗

a(s)F
∗

s(s)F
∗

s(s)êaes

4.5 Mean Length of a Busy Period

Noting the similarity between the above formulation for theconditional Laplace

transform and the probability of a certain path being taken during a busy period, we can

derive the joint transform equation for the number of customers served during a busy

period and its length. We have,

F ∗

0(s) = I

F ∗

1(s) = F ∗

a(s)F
∗

0(s)F
∗

s(s)F
∗

0(s)

F ∗

2(s) = F ∗

a(s)F
∗

1(s)F
∗

s(s)F
∗

0(s) + F ∗

a(s)F
∗

0(s)F
∗

s(s)F
∗

1(s)

...
...

F ∗

n(s) = F ∗

a(s).
[
F ∗

n−1(s)F
∗

s(s)F
∗

0(s) + F ∗

n−2(s)F
∗

s(s)F
∗

1(s) + . . . + F ∗

0(s)F
∗

s(s)F
∗

n−1(s)
]

The Z-transform of the above set of equations gives the two-dimensional trans-

form for number served during the busy period and the length of the busy period and is

given by the matrix functional equation

F ∗(s, z) = z I + F ∗

a(s)F
∗(s, z)F ∗

s(s)F
∗(s, z). (4.5.1)

Evaluating the joint transform atz = 1 and including the final departure gives the matrix

required to compute the Laplace transform for the busy period duration as
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F ∗(s)F ∗

s(s) = F ∗

s(s) + F ∗

a(s)F
∗(s)F ∗

s(s)F
∗(s)F ∗

s(s). (4.5.2)

SubstitutingF ∗(s)F ∗

s(s) = F ∗

T (s) andF ∗(s)F ∗

s(0) = F ∗

T , taking the derivative

with respect tos and evaluating ats = 0, we get,

(F ∗

T (0))′ =
(
F ∗

s(s)
′ + F ∗

a(s)
′F ∗

T (s)2 + F ∗

a(s)F
∗

T (s)′F ∗

T (s) + F ∗

a(s)F
∗

T (s)F ∗

T (s)′
) ∣∣∣∣

s=0

.

(4.5.3)

Using F ∗

a(0) = Ha, F ∗

s(0) = Hs, F ∗

a(0)′ = −DHa andF ∗

s(0)′ = −DHs,

F ∗

T (0) ′ is obtained by iteration on

F ∗

T (0) ′ = −DHs − DHa F ∗

T (0)2 + Ha F ∗

T (s) ′ F ∗

T (0) + HaF
∗

T (0) F ∗

T (0) ′

where,D = (B̂a + B̂s)
−1 andF ∗

T (0) = Y Hs

Let τb represent the r.v. for the length of a busy period, then

E[τb] = −
d

ds

(
pbpF

∗(s)F ∗

s(s)e
′
) ∣∣∣∣

s=0

= −
d

ds

(
pbpF

∗

T (s)e′
) ∣∣∣∣

s=0

= −pbp F ∗

T (0) ′ e′
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4.5.1 Simplifications in an M/M/1 Case

In this case

F ∗

a(s) =
λ

λ + µ + s
and F ∗

s(s) =
µ

λ + µ + s

Hence the Laplace transform for the length of busy period Eq.(4.5.2), simplifies to

F ∗(s) = 1 +
λ

λ + µ + s
F ∗(s)

µ

λ + µ + s
F ∗(s)

Therefore,

λµF ∗(s)2 − (λ + µ + s)2F ∗(s) − (λ + µ + s)2 = 0

Solving forF ∗(s) and selecting the appropriate root using the condition thatF ∗(s)

∣∣∣∣
s=0

=

1 and post-multiplying withF ∗

s(s) gives the well know transform for theM/M/1 busy

period,

F ∗(s) =
(λ + µ + s) −

√
(λ + µ + s)2 − 4λµ

2λ
. (4.5.4)

Also note that the Laplace transform for anM/M/1 case can be written directly as

a summation of conditional Laplace transforms, conditioned on the number of customers

served during a busy period, i.e.,

F ∗(s) =
∞∑

n=0

1

n + 1

(
2n

n

)
λ2nµ2n+2

(λ + µ)4n+2

(λ + µ)2n+1

(λ + µ + s)2n+1
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4.6 Mean First Passage Time for Different Threshold Levels

Consider a system where the system just transitioned from level n − 1 to leveln

and we are interested in the mean first passage time to reach back to leveln − 1. In this

section we show the effect of correlations in arrival and service processes on the mean

first passage time to go from back to this threshold leveln − 1 for different threshold

levels.

level
Thresholdn−1

n

Figure 14: Higher Level First Passages

This first passage time differs from a normal busy period onlyin the way the

process starts. Once that starting vector for this “Elevated Busy Period” is known, then the

rest of the analysis is similar to a normal busy period. To compute this starting vector, we

consider all possible paths that result in such a transitionand then compute the invariance

vector. If we letPn−1,n denote the probability matrix that represents all the possible paths

that lead the queue from leveln − 1 to level n for the first time, using a common first

passage argument [14], we can computePn−1,n using the following set of recurrence

relations.

P 0,1 = V̂ aL̂a

P 1,2 = (I − HsP 0,1)
−1Ha

58



...
...

P n−1,n = (I − HsP n−2,n−1)
−1Ha

If we cross a given threshold(n − 1) and start the process in thenth state with

a starting vectorpn−1,n, thenY HsP n−1,n represents all the possible ways in which we

will cross the same threshold for the first time, after dropping below the threshold. Hence

the required starting vector for crossing a threshold ofn − 1 reachingn is computed as

the invariance vector for the matrixY HsP n−1,n.

To show the effect of increase in threshold level on this firstpassage time, and

to study the effect of correlation in the arrival process andservice process on the mean

of this first passage time, we use the general setup for theMEP/MEP/1system. For a

c2 of 25 for the arrival process and 9 for the service process, ata Utilization of 0.75 and

correlation decay parameter of 0.7 (where applicable), we plot this mean first passage

time as a function of the threshold level in Fig.15.

When both the arrival and service processes have a correlation decay parameter

of 0.7, the starting vector for the correlated G/G/1 case fora transition from state 1 to

state 0 isp0,1 = (0.853, 0.016, 0.125, 0.005) and the mean length of the first passage time

from level 1 to level 0 is 3.92. As we increase the threshold level, the mean first pas-

sage time from leveln to n − 1 increases and converges. In this example, the starting

vector converges topn,n−1 = (0.45, 0.535, 0.006, 0.008) and the mean first passage time

converges to 36.46 which is quite higher than the mean first passage time from level 1 to

level 0. This increase in mean busy period as threshold levelincreases can be understood
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by noticing that for the queue to cross the higher threshold the internal states of the Ar-

rival and Service processes should already be such that either the Arrival process is in its

faster state or the Service process is in it slower state or both; and due to the correlation

in these processes, the arrival and/or the service processes tend to remain in those same

states for a while, which means that the transient queue length at a higher threshold is

bound to increase more than in the case when the the thresholdwas lower. After a certain

height the mean busy period converges because once the queuereaches a certain height,

the probability of the Arrival process being in the slower state or the Service process being

in the faster state is so low that a further increase in threshold does not effect the starting

phases for the arrival and service processes.
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4.7 Paths That Cross a Given Level During a Busy Period

In this section we compute the probabilities of going above aheighth during the

first passage from leveln to leveln − 1. We then show the effect of correlations in the

arrival and service processes and the effect of the startinglevel (n), on these probabilities.

p

X1

X2

Figure 16: Paths within a channel of heighth

Let Xh represent all the possible paths that start at a given level and end at the

same level, never going below that level and are of height atmosth, i.e., all paths within a

channel of heighth. We now have the following set of recurrence relations forX ′

hs

X0 = I

X1 = (I − HaX0Hs)
−1

X2 = (I − HaX1Hs)
−1

... =
...

Let Mn be the r.v for the density for Maximum height during a first passage from

leveln to leveln − 1. Hence,

Prob[Mn ≤ h ] = pXh−1Hse h ≥ 1. (4.7.1)
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The probability that during a busy period a given level is crossed is

Prob[Mn > h ] = 1 − pXh−1Hse h ≥ 1 (4.7.2)

The vectorp for starting at different levels is computed using the approach pre-

sented in the previous section. The effect of both the correlations in the arrival and service

processes as well as the effect of changing the base level on these probabilities is shown

in Table. 6. The correlation decay parameter gamma is set to 0.7 and a squared coefficient

of variation of 9 is used for both the Arrival and Service processes. Utilization is set to

0.75.

M/M/1 M/M/1 G/G/1 G/G/1
From 1-0 From 10-9 From 1-0 From 10-9

h Prob. that Height greater thanh
1 0.428571 0.428571 0.369322 0.620431799
2 0.243243 0.243243 0.212039 0.501704526
3 0.154286 0.154286 0.140600 0.442551601
4 0.103713 0.103713 0.101558 0.406558265
...

...
...

...
...

10 0.014699 0.014699 0.039565 0.316721063

Mean length of the busy period?
Mean length 0.799 0.799 2.07 16.32

Mean nos. served in a busy period?
Mean nos. 4 4 10.38 70.81

csquare 5.25 5.25 61.2 10.8

Table 6: Paths of Height greater thanh

Some very interesting numbers can be seen in the table above.For example, the

probability that the queue grows above a height of 10 during abusy period for aG/G/1

system for a transition from level 1 to level 0 is 0.03956 where as the same probability for
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a transition from level 10 to level 9 is 0.3167 which is ordersof magnitude higher. The ef-

fect of this can be clearly seen in both the mean length of the busy period which increases

from 2.07 to 16.32 and the mean number served during a busy period which increases

from 10.38 to 70.81. This is purely the effect of the increasein base level. Also note the

increase in csquare for the the mean number served in a busy period increases from 5.25

in an M/M/1 case to 61.2 in aG/G/1case; this is the sum effect of the correlations and

variances in the arrival and service processes. Also there are some not so obvious num-

bers such as the decrease in csquare of aG/G/1system as the base level changes from 1

to 10; but perhaps the reason for this is that at a higher levelthere is a lower chance of

having fewer number of customers served, i.e., the mean number served is high (70.81)

with relatively small variance of 10.8 compared to a high variance of 61.2 in the case

where the base level is 1.
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CHAPTER 5

BUSY PERIOD ANALYSIS OF FINITEQBD PROCESSES

5.1 Introduction

In this section we present solutions for the number of customers served during

a busy period and the length of a busy period for finiteMEP/MEP/1system where ei-

ther one or both of the arrival or service processes can be serially auto-correlated. We

present numerical results and study how the moments and autocorrelations in the arrival

and service processes affect the busy period. This includesthe probabilities of serving

exactlyn customers during a busy period and the moments of the length of the busy pe-

riod for different allowable system (queue) sizes. The resulting algorithms use dynamic

programming techniques and are easily implemented.

Consider a server in a certain facility that has finite resources (memory, disk space

etc.) Most performance measure studies of interest like latencies, system times, waiting

times etc. study the system from the perspective of an incoming customer with an ob-

jective of reducing the delays experienced by the customer as he progresses through the

system. If one needs to take certain proactive measures, forexample to avoid certain

breakdowns, it is equally important to study the system fromthe service providers per-

spective. An understanding of how many customers are being served by the server on a

continuous basis, i.e., between the servers idle times, is instrumental in devising proactive

schemes to achieve optimal performance.

Due to the restrictions presented by the finite boundaries and the effect of the
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boundary on the state transitions leading to the boundary, certain queueing studies, in-

cluding the busy period analysis, are more intricate for thefinite system as compared to

their infinite counterparts.

5.2 Busy Period of a Finite MEP/MEP/1 Queue

Now consider a finite queueing system where the maximum system size (and

hence the the highest level a sample path can take) is limitedto q. Fig. 17 shows all

II                             III                            IV                               V
0

1

I

Ha

Ha

Ha

Hs

Hs

Hs

Figure 17: Paths with exactly three arrivals and three departures

possible paths wherein exactly three arrivals and three departures occur during a sample

path, such that the sample path always stays above the starting level (level 1, in this case)

and ends exactly at this level; i.e., all sample paths that begin at some level and end at the

same level never taking any excursions below that level. In the case of an infinite queue

there are five such possible paths (the count given by Catalannumbers).

We now require that the sample paths do not cross a given height representing a

finite queue of sizeq. We allow the arrival process to be active when the queue is full,

and arrivals to a full queue are lost and cleared. All possible sample paths that represent

exactly three arrivals and three departures within a channel of width two are shown in

Fig. 18. The loops at the tops of the sample paths represent arrivals that are being dropped

when the queue is full. The number of paths is no longer given by the Catalan numbers.
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LetN s
1,0 represent the discrete random variable for the number of customers served

during a busy period when the maximum allowable system size iss, and letds
n,1 represent

the probability thatN s
1,0 = n.

1

0
HaY 1

0
HsY

2

2 HaY 1

1
HsY

2

1
HaY 1

2
HsY

2

0

Figure 18: Paths with exactly three arrivals and three departures within a channel of width
two

When computingds
n,1, all possible paths must be considered that fit within a chan-

nel of heightq and that have exactlyn−1 service completions. Note that the channel being

considered starts after the arrival of the first customer, hence then−1 arrivals and service

completions in the channel plus one additional service thatcompletes the transition of the

sample paths from level one to level zero at the end, completes the corresponding busy

period, resulting inn customers being served.

Let Y
j
i correspond to all possible paths of height less than or equalto j with ex-

actly i customers being served and thus exactlyi down transitions. Now we have,

ds
n,1 = p(0)Y s−1

n−1Hse

conditioned upon the process starting in the vectorp(0). The actual starting vector for the

busy period will be determined later.

We will now concentrate on deriving the recursive definitions for various sample

paths that servei customers within a channel of widthj, Y
j
i .

66



If the first arrival is immediately followed by a service completion we have exactly

one customer served, the probability of this occurring isp(0)Hse. In all other cases, the

second arrival occurring before the first departure. This also means that a transition from

two customers in the system down to one customer in the systemmust occur at least once

before the busy period ends. Let there bek service completions in the transition from

level two, to level 1 for the first time without exceeding a height of j − 1. Then there are

i − 1 − k services in the remainder of the busy period without exceeding a ceiling ofj.

Y
j
i ’s are recursively defined as follows:

Y 0
0 = (I − Ha)

−1, Y 1
0 = Y 2

0 = . . . = I,

Y 1
1 = Ha(I − Ha)

−1Hs, Y 1
n = (Y 1

1)
n, n ≥ 2

Y
j
i =

i−1∑

k=0

HaY
j−1
k HsY

j
i−1−k, i ≥ 2, 2 ≤ j ≤ i, (5.2.1)

Y
j
i = Y i, j > i.

Notice that the general structure of the definition ofY
j
i still resembles the general Catalan

recursion,Cn =
∑n=1

i=0 CiCn−i−1. In this respect, each of these sub-paths is similar to a

Dyck path [38] starting from the starting point of the sub-path.

For different allowable heights, we have a complete set ofY
j
i ’s. The following

matrix gives a better understanding of the relationship between all the differentY j
i ’s and

theY i’s that we see in the case of infinite queues.
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


Y 0
0 Y 0 Y 0 . . . . .

Y 1
1 Y 1 Y 1 . . . . .

Y 1
2 Y 2

2 Y 2 Y 2 . . . .

Y 1
3 Y 2

3 Y 3
3 Y 3 Y 3 . . .

Y 1
4 Y 2

4 Y 3
4 Y 4

4 Y 4 Y 4 . .

Y 1
5 Y 2

5 Y 3
5 Y 4

5 Y 5
5 Y 5 Y 5 .

. . . . . . . .




Consider the fourth row from the matrix shown. The individual elements,Y 1
3, Y

2
3, Y

3
3, . . .

are used to compute the probabilities of serving exactly three customers during a busy

period and a finite queue of size 1, 2, 3 or higher respectively. Note that if only three

customers are served, the finiteness of the queue does not have any impact of queues of

size four or more.

It should be noted from the recursive definitions forY
j
i ’s and the general matrix

structure for differentY j
i ’s, that once the boundary equations forY

j
0’s have been defined

and the first column of the matrix corresponding toY 1
n’s are defined, every other element

of the matrix can be computed using a dynamic programming approach.

In the case of infinite queues, the number of possible paths inwhichn customers

can be served is given by the(n − 1)st Catalan number; we are dealing withY i without

much regard for the ceiling, as the effective ceiling was at infinity, thusY i = Y ∞

i . For

finite queues, we now have a full gamut ofY
j
i ’s, and the number of possible paths is

not given by the Catalan numbers, but the general structure of Catalan recursion is still

preserved.

Also note that by closing the individual sub-matrices (Y
j
i ’s) using the relevant
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starting and ending vectors, we can directly read the corresponding probabilities.



pY 0
0e

′ pY 0e
′ pY 0e

′ . . . . .

pY 1
1e

′ pY 1e
′ pY 1e

′ . . . . .

pY 1
2e

′ pY 2
2e

′ pY 2e
′ pY 2e

′ . . . .

pY 1
3e

′ pY 2
3e

′ pY 3
3e

′ pY 3e
′ pY 3e

′ . . .

pY 1
4e

′ pY 2
4e

′ pY 3
4e

′ pY 4
4e

′ pY 4e
′ pY 4e

′ . .

pY 1
5e

′ pY 2
5e

′ pY 3
5e

′ pY 4
5e

′ pY 5
5e

′ pY 5e
′ pY 5e

′ .

. . . . . . . .




For example,pY 3
4e

′ gives the probability that exactly five customers are servedduring a

busy period when the maximum system size is limited to four.

5.2.1 Computing The Starting Vector

The starting vectorpbp, for the busy period in this finite queueing case is computed

using

pbpY
qHsH1 = pbp.

where,Y q =
∑

∞

i=0 Y
q
i represents all possible paths that lie within a channel of width q.

The equation for computing the starting vector of a random busy period symbolizes the

invariance for the system state between the starts of two successive busy periods. The

invariance equation forpbp is similar to that of the infinite queue case except that now the

paths that comprise theY are limited by the size of the queue, hence replaced byY q.

The intuition is still valid, that at the start of a random busy period if the starting vector is

pbp then following one of the possible pathsY q the busy period ends (Hs), followed by

an arrival event occuring causing the start of the next busy period.

An alternate method [14], to compute the starting vector is by introducingXh,
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representing all possible paths within a band of heighth with possible loops at the top,

then for a given maximum system sizes, Xs−1 can be computed using,

X0 = (I − Ha)
−1,

X1 = (I − HaX0Hs)
−1,

X2 = (I − HaX1Hs)
−1,

... =
...

Xs−1 = (I − HaXs−2Hs)
−1,

and the starting vectorpbp is computed using

pbpXs−1HsH1 = pbp.

Now, the probability that exactlyn customers are served during a busy period of

a finite queue where the maximum height of a sample path or the maximum system size

is restricted tos (corresponding to a maximum channel width of sizeq = s − 1 followed

by the first arrival), is given by

ds
n,1 = Prob[N s

1,0 = n] = pbpY
s−1
n−1Hse

′, n ≥ 1.

5.2.2 Mean Number Served During a Finite Queue Busy Period

For a given channel widthq, define the matrix z-transformY q(z) = Y
q
0z

1 +

Y
q
1z

2 + Y
q
2z

3 + . . . for q > 1. We can now derive the following recurrence relation for

Y q(z).
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z1Y
q
0 = Iz1,

z2Y
q
1 = (HaY

q−1
0 z1HsY

q
0z

1),

z3Y
q
2 = (HaY

q−1
1 z2HsY

q
0z

1 + HaY
q−1
0 z1HsY

q
1z

2),

... =
...

zn+1Y n = (Ha[Y
q−1
n−1z

nHsY
q
0z

1 + Y
q−1
n−2z

n−1HsY
q
1z

2

+ . . . + Y
q−1
0 z1HsY

q
n−1z

n]),

Y (z)q = zI + Ha(Y
q−1
0 z1 + Y

q−1
1 z2 + Y

q−1
2 z3 + . . .)

Hs(Y
q
0z

1 + Y
q
1z

2 + Y
q
2z

3 + . . .).

Thus,Y q(z) satisfies the matrix recurrence equation

Y q(z) = zI + HaY
q−1(z)HsY

q(z), q > 1. (5.2.2)

Notice the similarity to the matrix quadratic equation in relation to the infinite queueing

situation. However we now have differentY q(z)’s for different allowable queue sizes,q.

The boundary equation in the case whereq = 1 is as follows

Y 1(z) = Y 1
0z

1 + Y 1
1z

2 + Y 1
2z

3 + . . . ,

= zI + Y 1
1 z2(I + (Y 1

1)z + (Y 1
1)

2z2 + . . . ,

= zI + Y 1
1z

2(I − Y 1
1z)−1.
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At z = 1,

Y 1(1) = I + Y 1
1(I − Y 1

1)
−1,

= (I − Ha(I − Ha)
−1Hs)

−1.

Hence for any given allowable heightq, Y q(1) can be computed using

Y q(1) =
(
I − HaY

q−1(1)Hs

)
−1

, q > 1.

Taking the derivative of Eq. (5.2.2) w.r.t z and evaluating at z = 1 gives,

Y q ′ (1) = I + Ha Y q−1 ′

(z)HsY
q(1) + HaY

q−1(1)Hs Y q ′ (1). (5.2.3)

The base case whenq = 1, is

Y 1(z) = Iz + Y 1
1z

2 + Y 1
2z

3 + . . .

Taking the derivative at evaluating atz = 1,

Y 1 ′

(1) = I + 2
(
Y 1

1

)2
+ 3

(
Y 1

1

)3
+ 4

(
Y 1

1

)4
+ . . .

= (I + Y 1
1 + Y 1

1
2
+ Y 1

1
3
+ . . .) + (Y 1

1 + Y 1
1

2
+ Y 1

1
3
+ . . .) + . . .

= (I − Y 1
1)

−1 + Y 1
1(I − Y 1

1)
−1 + Y 2

1(I − Y 1
1)

−1 + . . .

= (I − Y 1
1)

−1.(I − Y 1
1)

−1

= (I − Ha(I − Ha)
−1Hs)

−2.

Hence we can computeY q ′ (1) for a givenq using

Y q ′ (1) =
(
I − HaY

q−1(1)Hs

)
−1

·
(
I + Ha Y q−1 ′

(1)HsY
q(1)

)
, q > 1. (5.2.4)
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Now the mean number of customers served during a busy period when the allowable

system size iss, is given by

E[N s
1,0] = p(0) Y s−1 ′

(1)Hse
′. (5.2.5)

Similarly the second moment is computed using,

Y 1 ′′

(1) = 2(I − Y 1
1)

−3Y 1
1,

and

Y q ′′ (1) =
(
I − HaY

q−1(1)Hs

)
−1

·
(
Ha Y q−1 ′′

(1)HsY
q(1)

+2Ha Y q−1 ′

(1)Hs Y q(1) ′
)

, q > 1.

(5.2.6)

It is to be noted that though the busy period analysis for a finite queue is similar

to that of an infinite queue as presented in [28], it is considerably more intricate due to

the fact that we now have an entire set ofY
j
i ’s instead of simplyY i’s. The construc-

tive mechanism presented in the case of the infinite queue however does provide a basic

mechanism to study the finite queue.

5.2.3 Mean Length of a Finite Queue Busy Period

Using the conditional Laplace transform derived in the previous section we con-

struct recursive equations similar to Eq.(8) representingthe Laplace transforms for the

length of the sample paths during a busy period. The joint transform is given by

F ∗(s, z)q = z I + F ∗

a(s)F
∗(s, z)q−1F ∗

s(s)F
∗(s, z)q. (5.2.7)
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whereF ∗(s, z)q represents the joint transform for the length of the sample paths and the

number served when the allowable height of the channel isq. The boundary condition at

z = 1 andq = 0 is given byF 0 ∗

(s, 1) = (I − F ∗

a(s))
−1, and for any given finite queue

size, the transform for the busy period for the system size isgiven by

F
q
T
∗

(s) = pbp F q−1 ∗

(s)F ∗

s(s)e
′, q ≥ 1. (5.2.8)

The mean length of the busy period in this finite queueing caseis computed using

the following.

F ∗(s)q′

∣∣∣∣
s=0

=
(
I − F ∗

a(0)F ∗(0)q−1F ∗

s(0)
)
−1

·
(
F ∗

a(0) ′ F ∗(0)q−1F ∗

s(0)F ∗(0)q+

+F ∗

a(0) F ∗(0)q−1 ′

F ∗

s(0)F ∗(0)q + F ∗

a(0)F ∗(0)q−1 F ∗

s(0) ′ F ∗(0)q
)
,

whereF ∗

a(0) = Ha, F ∗

s(0) = Hs, F ∗(0)q = Y q, F ∗(0)q−1 = Y q−1, F ∗

a(0) ′ =

−DHa, F ∗

s(0) ′ = −DHs, and

F ∗(0)1 ′

= −
(
I − Ha(I − Ha)

−1Hs

)
−2

·
[
DHa(I − Ha)

−1Hs+

+Ha(I − Ha)
−2DHaHs + Ha(I − Ha)

−1DHs

]
.

Let τm
b represent the r.v for busy period duration of a finite queue where the max-

imum allowable system size ism, then,

E[τm
b ] = −

d

ds

(
pbpF

∗(s)m−1F ∗

s(s)e
′
) ∣∣∣∣

s=0

= −pbp

(
F ∗(0)m−1 ′

Hs − Y m−1DHs

)
e′.

(5.2.9)
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5.3 Numerical Examples

We consider here various systems where the arrival and/or service process are

markovian, renewal matrix exponential and correlated matrix exponential.

5.3.1 M/M/1 Case

Consider a simpleM/M/1 case where theHa andHs are scalars, some simplifi-

cations are evident. For example, since(I − Ha)
−1Hs is now equal to 1, we have

Y 1
1 = Ha, Y 1

n = Hn
a n ≥ 2.

But no better structure is evident yet for higher levelY
j
i ’s than as defined by

Eq. (5.2.2). The count process for the number of possible paths that serven customers

during a busy period of this system is not given by the catalannumbers. In-fact, there

can be an infinite number of possible sample paths due to the arrivals that get dropped

represented by(I − Ha)
−1. For any given fixed queue size we can however compute

the probabilities forn customers served during a busy period using Eq. (5.2.2). Foran

M/M/1 queue with a utilization of 0.7, the probabilitiesds
n,1 are shown in Table 7. Notice

that for a given system size, the probabilities forn customers served differ from the infinite

queueing situation starting whenn is equal to the maximum allowable system size. For

exampled3
3,1=0.093178 where as for the rest of the system sizes,d5

3,1 = d10
3,1 = d100

3,1 =

0.069021; this is as expected.

The Laplace transform for the length of the busy period in finite queueing situation
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Table 7: MM1 Finite Queue:ds
n,1 for a Utilization = 0.70

n s = 3 s = 5 s = 10 s = 100

ds
n,1

1 0.588235 0.588235 0.588235 0.588235
2 0.142479 0.142479 0.142479 0.142479
3 0.093178 0.069021 0.069021 0.069021
4 0.060937 0.041795 0.041795 0.041795
5 0.039851 0.029762 0.028345 0.028345
6 0.026062 0.023093 0.020597 0.020597
7 0.017044 0.018606 0.015679 0.015679
8 0.011146 0.015221 0.012343 0.012343
9 0.00729 0.012524 0.009965 0.009965
10 0.004767 0.010329 0.008208 0.008207

is of the general form

f q ∗ (s) =
a

1 − b
1− b

1− b

1−

...
1− b

c

, (5.3.1)

whereρ = λ
µ
, a = 1

1+ρ+s
, b = ρ

(1+ρ+s)2
, c = 1 − ρ

1+ρ+s
, and the depth of the continued

fraction depends on the maximum allowable system size. The problem of finding a closed

form expression for the above finite continued partial fraction seems to be an open prob-

lem as of yet. However, for any given finite system size we showbelow a general form

for the first two moments for the length of the busy period. Letτ s be the random variable

representing the length of the busy period where the finite system size is limited bys,

E[τ s] =
1 − ρs

1 − ρ
, s > 1 (5.3.2)

E[τ s 2] = 2!

(
s∑

n=1

Tnρ
n−1 +

1∑

n=s−1

Tnρ
2s−1−n

)
, s > 1, (5.3.3)

where,Tn are the Triangular numbers given byTn = n(n+1)
2

, n ≥ 1.
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5.3.2 MEP/MEP/1 Case

Consider anMEP/MEP/1system where the arrival process is represented by

pa =

[
1
2

1
2

]
, Ba = 1.4 ∗




1 0

0 25


 ,

La = 1.4 ∗




(1 + γa) (1 − γa)

(1 − γa) (1 + γa)


 ,

whereγa = 0.9, is the parameter that controls the correlation decay of theprocess. Note

that the marginal distribution is independent ofγa and has a mean of 0.3714 and a squared

coefficient of variationc2 = 2.7. Similarly, consider the service process represented by

ps =

[
1
4

3
4

]
, Bs =




3 0

0 4


 , Ls =




2.775 0.225

0.1 3.9


 .

This system has a utilization of 0.73 and the probabilities of servingn customers in a

busy period for different allowable system sizes (ds
n,1) are shown in Table 8.

Table 8: MEP/MEP/1 Finite Queue:ds
n,1 for a Utilization = 0.73

n s = 3 s = 5 s = 10 s = 100
ds

n,1

1 0.692976 0.692976 0.692976 0.692976
2 0.130622 0.130622 0.130622 0.130622
3 0.068845 0.050156 0.050156 0.050156
4 0.038867 0.024632 0.024632 0.024632
5 0.023346 0.018133 0.013933 0.013933
6 0.014738 0.015667 0.008724 0.008724
7 0.009649 0.013558 0.005931 0.005931
8 0.006477 0.011368 0.004325 0.004325
9 0.004418 0.009268 0.003348 0.003348
10 0.003046 0.007407 0.003097 0.002724
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Figure 19:G/G/1: Effect ofγa on mean number served

We show the effect of the correlation parameterγa on the mean and squared coef-

ficient of variation of number of customers served in the finite case in Fig. 19 and Fig. 20

respectively. An interesting observation is that for a given utilization, as we allow the

maximum queue size attainable to grow, the mean number of customers served during a

busy period tend to converge. Though this gives an impression that at higher allowable

system sizes, the correlation parameter does not have a considerable impact on the num-

ber served, the impact of this increase in correlation parameter can be clearly seen as it

effects the variance and hence the squared coefficient of variance for the number served.

We show the effect ofγa on the mean length of the busy period in Fig. 21. Com-

paring the mean busy period lengths for a maximum allowable size of 50 and 100, it can

be seen that except for whenγa is 0.9, the mean busy period lengths for a maximum height
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Figure 20:G/G/1: Effect ofγa on c2 for number served

of 50 and 100 match to atleast one significant digit after the decimal. Again, this is as ex-

pected. As the correlation decay parameter increases, we would expect the finite busy

period means to approach the infinite queue’s busy period mean at increasing maximum

allowable queue sizes and hence they tend to converge slower.

For different allowable system sizes, by ignoring the loopsthat form at the top, a

set of count processes are generated from the the set of equations. 5.2.2. Some of these

number series are known to be related to the number of possible paths in finite spaces.

However, the set of equations as defined in 5.2.2 allows us to unify them all. The different

number series are readily obtained by settingY 0
0 = 1, Ha = 1 andHs−1 and are shown

in Table 9.
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Figure 21:G/G/1: Effect ofγa on mean busy period length

5.4 Conclusions

In this chapter we derived closed form recursive solutions to compute the probabil-

ities forn customers served during the busy period of a finiteMEP/MEP/1system wherein

both the arrivals and services can be auto-correlated. We also derived expressions to com-

pute the first two moments for the number of customers served and expression to compute

the mean length of a busy period in finite queues. This framework provides us with tools

Table 9: Catalan like sequences related to finite queues
Max

height Number Sequence
3 1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025
4 1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721
5 1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798,479779
6 1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, 54320, 184736,629280
7 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, 57686, 201158,704420
8 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, 58598, 206516,732825
9 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 58766, 207783,740924
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to study similar first passages starting from a random or an environment-defined starting

vectors. This approach to the busy period gives us qualitative insight into its structure and

lays a general framework to analyze other transient system properties. The algorithms

developed are easily programmable using dynamic programming techniques and can be

incorporated into real life performance analysis tools.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis we developed a framework which can be used to study and better

understand many stochastic processes occurring in nature.The framework presented al-

lows the constituting processes to be both general and correlated and hence lead to more

realistic models. Applications in finance, biological and social sciences are noted and we

study the transient busy period as it relates to computer networks and queues in detail to

demonstrate the application of tracking these memory-fullprocesses.

Essentially by representing the current state of a system using a relevant start-

ing state vector, and by allowing the driving process to carry correlations across state

transitions of the underlying quasi-markovian chain enables us to track these paths very

accurately.

In the first part of the thesis we provided solutions to compute the probabilities

for exactly ‘n’ customers being served in a busy period ofMEP/MEP/1queueing systems

and provided some numeric results both using this analytic approach as well as by sim-

ulation. We presented the results in this part in an algorithm hence making it a straight

forward task to compute the performance metrics of interest. We then presented new ma-

trix exponential representations to characterize the lengths of sample paths during these

busy periods and derived expressions to compute the momentsfor the length of a busy
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period as well as for the number of customers served during the busy period. We studied

the effect of various parameters effecting the constituting processes by demonstrating the

effects of the the first three moments and the auto-correlations in the arrival and service

processes on busy periods.

In the second part of the thesis, we study the effect of increase in threshold level

and the correlations in the arrival and service processes onthe mean first passage time to

go below a given threshold. Finally we studied the busy periods for general finite queueing

systems and derived recursive matrix quadratic equations which have a similar structure

to the matrix quadratic equations in an infinite case but are relatively more intricate.

6.2 Future Work

As noted earlier, the matrix quadratic form forY (z) derived in Chapter.3 is closely

related to the well known matrix quadratic equation for the matrix G that occurs fre-

quently in matrix geometric literature [33], [35]. In fact,“Y (1)Hs” is equivalent to the

matrix G if the system under consideration hasMAP process as one of the driving pro-

cesses.

In [3] and [4], Kumaran et al. propose a spectral decomposition based approach

to compute various performance metrics, including the waiting time, system size etc.,

for a single serverMEP/MEP/1queue. The method essentially involves constructing

a Coupling matrixC (introduced by Van de Liefvoort [27]) from the arrival and service

processes, which is then spectrally decomposed to form the matrixR, from which explicit

solutions are derived for waiting times etc. This matrixR thus constructed is found to

be similar to the similarly named matrixR that occurs in matrix geometric literature, in
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the sense that they have the same eigen values. Let theR matrix that occurs in matrix

geometric literature be denoted byRn and theR matrix computed from the Coupling

matrix be denoted byRa. We suspect that there exists a matrix transformation that relates

these two differentR matrices. If such a transformation were found, then the computation

of the matrixY Hs or alternativelyG can be performed very efficiently as the matrixG

andRn are related byG = (I − RnHs)
−1Hs. Such a transformation remains elusive

yet.
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