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ABSTRACT

A number of processes that occur in nature as well as thoseathaa manifestation
of human activities are correlated in nature. They can berttes] by stochastic non-
markovian processes, and most known results in theory aiteeisteady state domain,
assuming that the system has been in operation for a longyartone (ideally infinitely
long), and that the state in which the system starts has eotefh the current behavior of
the system. Nevertheless steady state assumptions doldan moany applied situations
as the system does not operate for infinitely long and perbegs gets restarted every
so often. In this thesis we provide a framework to stochabyid¢rack these processes.
Application of this theory provide valuable insights inteettransient behavior of these
stochastic processes and allows us to model and study e eff auto-correlations in
the driving processes on transient probabilistic (pertoroe) metrics of interest. In par-

ticular, we study the busy time (both length and number shrofthe single server queue.

Applications of the work shown in this thesis are abound. Mwmecesses in



telecommunications and computer networks exhibit a higyjreke of variance and are
known to exhibit serial correlations across multiple tingales. In order to develop ac-
curate models to represent these systems, we allow thalaand the service processes
that characterize the system to be both general and cadelsife specifically study the
busy period and other first passages of an auto-correME/MEP/1queueing system

to demonstrate the application of tracking these memalfpfacesses.

Representing the current state of a system using a reletating state vector,
and by allowing the driving process to carry correlationsoss state transitions of the
underlying quasi-markovian chain enables us to track tpesies very accurately. The
analysis presented here is in the transient domain and due®aquire the underlying
processes to be in a steady state. The flexibility that isezekii by being able to model
extremely variant (general) process which are allowed tauie-correlated allows us to

accurately model many of these real life processes.

In the first part of the thesis we provide solutions to compliéeprobabilities for
exactly ‘n’ customers being served in a busy periodiiP/MEP/1queueing systems,
where both the arrival, and the service processes couldbmteneral and correlated
Matrix Exponential Processes. We then present matrix expiad representations to
characterize the lengths of sample paths during these largydg and derive expressions
to compute moments for length of the busy period as well agf®number of customers
served during the busy period. In the second part of thegshes study the effect of

increase in threshold level and the correlations in thearand service processes on the



mean first passage time to go below a given threshold (givaintile system just tran-
sitioned from the threshold level — 1, to leveln). Finally we study the busy periods
for finite queueing systems, and again study both the lenigtheobusy period and the

number of customers served during such a time.

This abstract of 490 words is approved as to form and content.

Appie van de Liefvoort, Ph.D.
Professor
Computer Science Electrical Engineering Department
School of Computing and Engineering



The undersigned, appointed by the Dean of the School of Gtaditudies, have
examined a dissertation titled “Sample Path Analysis otlsstic Processes: Busy Pe-
riods of Auto-correlated Single Server Queues,” presebye@haitanya N. Garikiparthi,
candidate for the Doctor of Philosophy degree, and heretiifycthat in their opinion it

is worthy of acceptance.

Appie van de Liefvoort, Ph.D. Date
Computer Science Electrical Engineering

Cory Beard, Ph.D. Date
Computer Science Electrical Engineering

Deep Medhi, Ph.D. Date
Computer Science Electrical Engineering

Jerry Place, Ph.D. Date
Computer Science Electrical Engineering

Kenneth Mitchell, Ph.D. Date
Computer Science Electrical Engineering

Khosrow Sohraby, Ph.D. Date
Computer Science Electrical Engineering

Victor Wallace, Ph.D. Date
Electrical Engineering and Computer Science,
University of Kansas



CONTENTS

ABSTRACT . . . . e e il

LISTOF TABLES . . . . . . e e viii

LIST OF ILLUSTRATIONS . . . . . . . e IX

ACKNOWLEDGEMENTS . . . . . . . . e s e Xi

Chapter

1 SAMPLE PATH ANALYSIS OF CORRELATED QUEUES . . . . . . . .. .. 1
1.1 Motivation . . . . . . . . . 1
1.2 BusyPeriod Analysis . . . . . . . .. e 3
1.3 Background Material . . . . . . ... . ... 6
1.4 Literature SUIVEY . . . . . . . . e e e e 10
1.5 Dissertation Structure . . . . . . ... e 12

2 MATRIXEXPONENTIALPROCESS . . ... . ... . ... ... ...... 14
2.1 Matrix Exponentials. . . . . . .. ... 41
2.2 Matrix Exponential Process . . . . . . . . ... o 20
2.3 ConcurrenMEPsandHatSpaces . . . . . ... ... . ... ...... 22

3 PROBABILITY MASS FUNCTION FOR NUMBER OF CUSTOMERS SERVED
DURING THE BUSY PERIOD OF A CORRELATEIMEP/MEP/1SYSTEM 24
3.1 Introduction . . . . . . . ... 24
3.2 Model Description . . . . . . . .. 25
3.3 Conditional Sample Path Analysis of First Passages iMBR/MEP/1

Vi



3.4 Number of Customers Served in Busy Periods dfi&i/MEP/1System 35

3.5 NumericalResults . . . . . . ... ... ... 37
3.6 Summary . ... e e 47
4 BUSY PERIOD LENGTH AND HIGHER LEVEL FIRST PASSAGES . ... 49
4.1 Introduction . . . . . . . .. 49
4.2 Conditional Density for thenin(A,S)Process . . . . . .. ... .. ... 49
4.3 ME Representation for The Length ofa Sample Path . . . . . . .. 50

4.4 Conditional Laplace Transform of a Sample Path DuringigyB?eriod . 53

45 MeanlLengthofaBusyPeriod . . ... ... ... ... ... ...... 55
4.6 Mean First Passage Time for Different Threshold Levels ... . . . .. 58
4.7 Paths That Cross a Given Level During a Busy Period . . . . . . .. 61
5 BUSY PERIOD ANALYSIS OF FINITEQBDPROCESSES . . . . .. .. .. 64
5.1 Introduction . . . . . . . . . ... 64
5.2 Busy Period of a Finit¢/ EP/MEP/1Queue . ... .......... 65
5.3 NumericalExamples . . . . . ... .. . . .. .. 75
54 ConcClusions . . . . . . .. 80
6 CONCLUSIONS AND FUTUREWORK . . . . ... ... ... ... .... 82
6.1 Conclusions . . . . . . . . .. 82
6.2 Future Work . . . . . . . . .. 83
REFERENCE LIST . . . . . . . 85
VITA e 90

Vil



TABLES

Table Page
H operators for differentsystems . . . . . ... ... ... .. 28
M/D/1 Comparison, Utilization=0.8. . . . . ... ... ... ... .. 39
MAP/MAP/1 System, Utilization=0.75 . . . . . . .. ... .. .... 40
Simulation vs Analytical for M/MEP/1, Utilization=0.75 ... ... .. 42

Bounds for the First Three Normalized Moments of ME(2) Blisttions 46

Paths of Height greaterthan . . . . . . . ... ... ... ....... 62
MM1 Finite Queued;, , for a Utllization=0.70 . . . . . ... ... ... 76
MEP/MEP/1 Finite Queuel; , for a Utilization=0.73 . . . . . .. ... 77
Catalan like sequences related to finitequeues . . . . .. .. ... . 80

viii



Figure Page

1 Birth Death Process . . . . . . . . . . . . . .. .. . 1
2 k-Stage Erlang Distribution . . . . . . . .. ... ... . o0 16
3  k-Stage Hyper-Exponential Distribution . . . . . .. ... ... ... 17

4  k-stage Coxian Distribution . . . . .. ... ... ... ... .. ... . 18
5 Paths serving exactly 3 customers during the first pasgage, . . . . . 29

6 Paths serving exactly customers during the first passagg; , . . . . . 30

7 ME Density that touches the x-axis multipletimes . . . . . ...... . 39

8 MEP/M/1: Effect of increasing? in uncorrelatedcase . . ... ... .. 43
9 MEP/M/1 Effect of correlationon Prof, =n] . .. ... .. ... .. 44
10 MEP/MEP/1 Effectofincreasing? . . . . ... ... ... ... .... 45
11 MEP(r1,r2,r35,)/MEP/L Effect of Third moment, Util:0.55 . . . . . .. 46
12 MEP(r1,r2,r3;5,)/MEP/L1 Effect of Third moment, Util:0.83 . . . . . .. 47
13  MEP(r1,r2,r3;5,)/MEP/L Effect of Third moment, Util:0.9,0.99 . . . . . 48
14 Higher Level FirstPassages . . . . . . . . . .. ... .. .. ... .. 58

15 Mean Lenght of First Passage From Levébn —1 . . . . .. .. ... 60
16 Paths withinachannelofheight . . . . . ... ... .. ... ..... 61
17 Paths with exactly three arrivals and three departures. . . . . . . .. 65
18 Paths with exactly three arrivals and three departurdgma channel of

LIST OF ILLUSTRATIONS

widthtwo . . . . . . 66



19 G/G/L Effect ofy, on mean number served

20 GJ/G/1 Effect ofy, onc? for number served

21 G/G/1 Effect ofy, on mean busy periodlength . . . . .. ... .. ...



ACKNOWLEDGEMENTS

First and foremost | am deeply grateful to my advisor Dr. Agpyan de Liefvoort
without whose constant support, encouragement and guedavauld not have completed
this dissertation, and for kindling in me a love for numbe&scondly many thanks go to
my other half Renu Paruchuri without whose many sacrificescanstant encouragement
i would have not made it through either, and to the cute liiglet in our life Maruti whom
I have missed mostly during the past few years but who nestedh filled our life with

immeasurable joy.

Thanks to all my advisors, Dr. Cory Beard, Dr. Deep Medhi, I&rry Place, Dr.
Kenneth Mitchell, Dr. Khosrow Sohraby and Dr. Victor Wakafor the guidance they
have provided. Special thanks go to Dr. Kenneth Mitchelltfer numerous long chats
(sometimes lasting more than a few hours) which were alwag@iing and many a times
left me feeling guilty for occupying too much of his time, atmdDr. Khosrow Sohraby
whose insightful questions helped our research immenséany thanks to my parents
Seshulatha Bonam and Vittal Garikiparthi without whom nohé¢his was possible and
my brother Aditya Garikiparthi for all the good times, antaalr family members. Finally
many thanks to all my friends (here and afar) and staff hetgMiKC who have made

my last few years enjoyable. Notable among them, Jayesh KanmAmit Sinha, Manish

Xi



Xil
Mehta, Gaurav Agrawal, Balaji Krithikaivasan, Shekhawv&stava, Shi Zhefu, Jiazhen
Zhou, Charlie Zhao, Armin Heindl, Muralikrishna Padavafaavind Thoram, Anand
Pappuri, Pranojit Chandra, Srilakshmi Katragadda, Vasu&ai, Jagadish Bose, Ujwal

Manuka, Pavan Kaja, Praveen Chekuri, Praveen Soma, Pr&atktla, Debby Dilks,

Coretta Carter, Sharon Griffith and Rebecca Edmundson.



CHAPTER 1
SAMPLE PATH ANALYSIS OF CORRELATED QUEUES

1.1 Motivation

A number of stochastic processes that occur in nature ars tthat are a man-
ifestation of human activities exhibit correlations and aence memory-full. Most of
these processes also show high degrees of variances andgisome unique challenges
for researchers trying to build models to capture their biglnaWe explore the concept
of this "memory-full’-ness and provide a framework to tratlese processes. Applica-
tion of this theory provide valuable insights into the trans$ behavior of these stochastic
processes and allows us to model and study the effect ofcutetations in the driving

processes on some of these transient probabilistic (peaioce) metrics.

C@:

Figure 1: Birth Death Process

Let all possible states the system can assume at any giviamired the transi-
tions from one state to another be represented by a gendhedasath process as shown
in Fig. 1. Consider two generic states ‘A’ and ‘B’ represagtiwo possible states the
system can assume on such a state space. When the systemgwém state, a new
arrival to the system causes a state transition to the rigthtastomers departing (or ser-

vice completion) cause the system to transition one stepedeft. There are multiple



ways of traversing from state A to state B. If the underlyimggesses driving the chain
are serially correlated, then the path that is traverseddotr B (from A) might effect the
way in which the system starts once state B is reached; antut efigct any other paths of
which “A-B” is a sub-part thereof. Most processes occuriimgature are in fact known
to show serial correlations at multiple time scales. In thiesis we study the effects of
these serial correlations in the driving processes on hesetlsample paths progress by

essentially tracking these correlated memory-full preess

Applications of the work shown in this thesis are abound. We\sbusy periods
and other first passages of an auto-correltéd/MEP/1Queueing system to demon-
strate the potential and relate the results to applicatroosmputer systems and networks.
An application in the financial arena might be to model theypeesion of price data from
a given price A to a price B. Discrete models are commonly useaiodel the future
progression of price series and usually assume the pricement to be uncorrelated
and assign equal probabilities to unit up and unit down mavesassume that the next
move is independent of the previous. These price moves de sboelations often and
we might be able to model the price movement as serially ae®@ processes. Most of
the financial data is also perceived to be non-stationarghvhdds another dimension of
complexity. In biological sciences similar analysis carubed to model the progression
of certain growth and/or shrinkage processes. Anotheregifmn in social sciences is
to model the variation in population of a given species ofiif¢é. The population of a
given species in a given region depends on various factorshwgossibly induce effects
that are correlated. For example, a draught or a flood migdityeeause the variation
in the local population to be neither normal nor indepenaémirevious time instances.

The flexibility that is achieved by being able to model exteéywvariant (general) process



which are allowed to be auto-correlated allows us to acelyraodel many of these real

life processes.

By representing the current state of a system by a relevarttrgj state vector,
and by allowing the driving process to carry correlationsoas state transitions of the
underlying quasi-markovian chain enables us to track tpesies very accurately. Any
process which can be modeled as a quasi-birth-death (QB&) clan be studied using
the techniques presented here. Note that the analysisnpeesieere is in the transient

domain and does not require the underlying processes todstaady state.

1.2 Busy Period Analysis

In this section we confine ourselves to the area of compugtesys and networks
and show how different problems in this area can be reducédetgeneral problem of
probabilistic tracking of memory-full processes. Mostgesses in telecommunications
and computer networks exhibit a high degree of variance amkmown to be serially
correlated. Therefore, in order to develop accurate mdadekspresent these systems, we
need to allow for the arrival and the service processes traiacterize the system to be

both general and correlated.

Consider the operation of a consolidated server. An indeiderver that forms
a part of this consolidation could be perceived to be highilyzed if its queues grow
beyond a given threshold, or perhaps its cpu utilizationssa given threshold level,
or perhaps when its disc access times, or some other perficemaetrics of interest
cross certain predefined or dynamically adjusted thresleokels. A question that often

arises in such a case is when should a server (or processlobatatl more resources



(processing power, more buffers, etc). The administraightrchoose to allocate more
resources to this given server so as to improve system pegifare (response times etc),
but if the available resources are limited (which they ulsuale), he/she needs to make
an informed decision on whether or not to allocate addificgsources. It is important to
know how long the server will be in this state of high utilinat In other words how long
will the server be in a state that is above a given threshold@ti#er interesting question
is as follows. Suppose a first threshold level triggers aesg<b be actively monitored,
but no further action (in addition to closely monitoring tkystem) is required until the
system reaches a second threshold level, at which point setien is warranted from
the administrator. As soon as the first threshold level iss®#d, the solutions proposed
in this thesis provide quantitative measures related tesing the second threshold level
based on the current state of the system. For example, plitieatof ever reaching the
second level, probabilities for the number of events o@egitoefore we come back to the
first threshold level. This would enable the system adnraist to pro-actively manage
the resources at his disposal. We study this problem and fieer celated problems by

posing them as modifications to the classical Busy Periodieno.

Similarly, Queue length fluctuations during a Busy periodve quantitative
measures to actively manage a network/system, wherebynesocan be allocated in a
proactive manner leading to optimal system performancestiidy these queue length
fluctuations we need to look at the transient Busy Period efgilreue from a particular

instant in time.

The Busy Period for a system is defined as the time intervaldet any two

successive idle periods. It starts when a customer arroves ttmpty system and ends



when the departing customer leaves the system idle for thetiine thereafter. The
systems behavior around some threshold level can be stogiethalyzing the system
starting immediately after it crosses this threshold |égekthe given server/process and
ending when we reach this threshold for the first time théeeaT his process can hence

be represented as a first passage process around this tbreskeb
The problems we investigate in this thesis are as follows:

e The probabilities for serving exactly ‘n’ customers in ayppsriod ofMEP/MEP/1
gueueing systems, where both the arrival, and the servaxepses could both be

general and correlated Matrix Exponential Processes.

e Characterize the lengths of sample paths during these lergyds as an ME pro-

cess and find the moments for the length of a busy period.

e Study the effect of increase in threshold level and the taticas in the Arrival
and Service processes on the mean first passage time to godgleen threshold

(given that the system just had a transition from the thrieslevel n — 1, to level
e Probabilities that sample paths are of heights greater'thauring a first passage

from leveln to leveln — 1 and the effect of starting level and correlations on these

probabilities.

e Effect of correlations on the probabilities farcustomers being served and on busy

periods durations for finite queueing systems.



1.3 Background Material

Most of the known results in queueing theory are relateddadst state behavior.
When studying such systems it is assumed that the systenebasrboperation for a long
enough time (ideally infinitely long) that the state in whtble system starts has no effect
on the current behavior of the system. Nevertheless stedatlyassumptions do not hold
in many applied situations as the system does not operatiefioitely long and perhaps

even gets restarted every so often.

Busy periods of markovian queues provide insights intotéwesient nature of the
system. Transient system state equations have been sawvedaunumber of techniques.
Refer to [16] for an excellent introduction to transientlgss and its historical perspec-
tive. We summarize the difference-equation technique $e od an M/M/1 queue and the

technique used by Takacs for an M/G/1 type queue as presenies].

1.3.1 Difference-equation technique

A busy period is defined as the interval of time from the insgamnit arrives at an
empty system and its service begins, to the instant whenrettiversbecomes free for the
first time thereafter. A busy period is a random variable)(rbeing the first passage time

from state 1 to state 0. Denote

T = length of the busy period
b(t) = pdfofT
N*(t) = number present at time t during a busy period

{N*(t),t > 0} is a zero-avoiding state process
g(t) = Pr{N*(t)=n},n=1,2,...
gn(s) = Laplace Transform (LT) of,,(t).



We haveg; (0) = 1,¢,(0) = 0,n # 1, forn > 2, ¢,(t) satisfying the transient

differential-difference equations. Thus, for BiiM/1 system, using traditional notation,

0 (t) = =M+ 1)@ (t) + Agn—1(t) + pgnya(t), n>2 (1.3.1)

As the termy,(t) will not occur, the equation correspondingrte= 1 will be

¢ (t) = =\ + p)a(t) + pga(t)- (1.3.2)
Taking LT of eq. (1.3.1) and eq. (1.3.2),

1Gn11(8) — (8 + A+ 1)@n(8) + Agn-1(s) =0, n =2 (1.3.3)

This is a difference equation of order 2. Solving the chanastic equation of eq. (1.3.3)

and inverting the Laplace transform yields,

A n/2
qn(t):<;) %e*“wvn(%\/xu% n=1,2,... (1.3.4)

wherel , is the Bessel function of first kind [16], [15].
Conditioning upon the number of units present at any indtavttich complete

their service in (t, t+dt), and taking the limit @ — 0, gives the density for busy period

length as

1
b() = —p " exp™ L (200 M), (1.3.5)

The LST ofT is given by

b*(s):(/\+”+8)_\/;§+“+8)2_4/\“. (136)




1.3.2 M/M/1 Busy Period - Matrix Exponential Form

We briefly introduce matrix exponential distributions atw an ME represen-
tation for the busy period of thBl/M/1 system; more precisely, we show a finite ME
approximation to thé//M/1 busy period. A matrix exponential (ME) distribution is de-

fined as a probability distribution whose density can betemiis
f(t) = pexp(—Bt)Be', t>0, (1.3.7)

wherep is the starting operator for the proce#s,is the process rate operator andis
a summing operator, a vector usually consisting of all 1ot necessarily so. We will

give a detailed introduction to matrix exponential disttibns in the next chapter.

To obtain a matrix exponential form for the busy period of M@1/1 system, we
use its moments (coefficients from Taylor series expansiayol1.3.6) as input to the
moment matching algorithm [43]. Since the LST is not ratlpmee do not have a finite
matrix exponential representation that matches all the emtsnof the distribution. We
approximate the distribution to an arbitrary precisione Tdllowing finite approximation

is obtained by matching the first nine moments,

pz[ﬁoooo]

I

e G O 0 0
2% G g 00
0 0 & GHE
U

e:[10000,

whereV = B~'. Substituting\ = pp and using similarity transformations we get the



following matrix exponential representation:

PZ[lOOOO

[ 1-p) 1 0 0 0 |
X p(l—=p) (I+p) 1 0 0
vV = 0= 0 p (1+p 1 0
0 0 p (+p 1

0 0 0 p (+p)

e=[10000.

1.3.3 Takacs Integral equation for M/G/1 System

In this section we show the general methodology used to aedhe busy periods
when one of the constituent processes is non-markoviamiiyg the case of ah/ /G /1
system. Assume that a busy period is initiated by a singléoowesr. As this initiating
customer is in service, th& customer who arrives during this time period will be called

theit” descendant. Let

T = length of the busy period
G(t) = PT <t}
B(t) = Pr{v <t}, wherevis the service time
G*(s) = LSTofT
B*(s) = LSTofv

To obtain the busy period distribution, condition on two rge- namely, on the
duration of the service timeof the initiating customer (customer who starts the new busy
period) and on the numbet of arrivals during the service time of the initiating custm

Given thatv = x and A = n, thenn sub-busy period%7, . .., T,, are generated by the



descendants. Assuming that the are IID and are independent of we have
Ele v =0,A=n} = [G*(s)]" (1.3.8)
Finally the LST of T is obtained by un-conditioning orand A. Hence

E{e*T) = /: Z E{e v =2,A=n}Pr{A =n}dB(z) (1.3.9)

n=0

Simplifying this equation results in the well known functad equation for the.ST of

busy period as

G*(s) = B*[s + A — AG*(s)]. (1.3.10)

Known solution techniques rely on finding either the Lapla@asform of the
busy period or its derivatives by iteration and then invieeinh back into the time domain.
Specifically note the recursive definition for the Laplaangform of the busy period,
G*(s). This structure is preserved even when one of the processased is quasi-birth-
death [33] in nature and most known solution approachesvweawound solving for this

transform (or a matrix transform thereof) using numerieahniques.

14 Literature Survey

For anM/M/1 system, the probabilities fat customers being served during a
normal busy period are known, see for example Takacs [4§ads also derives the joint
density for the number served and the length of the busy gevitere either the inter-
arrival times or the service times have an exponentialitigion [41]. More recently, Ny
and Sericola [37] study the busy period distribution of BMAP/PH/1queue based on

an approximation of the exponential of an infinite siZgdmatrix using uniformization

10



and truncation. Lucantoni et al. consider the transient BM& 1 queue [32], [33] and
derive the two dimensional transform for the joint disttiba for the number served in a

busy period and its length, which are numerically inver@d [

There is extensive literature studying the tail of the busyqa, especially for the
M/M/1 queue [2]. One of the observations in that paper istthatail distributions of busy
periods are sub-exponential, which are often hard to mdtetma and Dumas [8] relate
the tail behavior of the active periods of the input sourcethe tail of the busy period
distribution of a GI/G/1 queue. Asmussen and Bladt [7] usegample path approach
to study the mean busy periods for Markov modulated queués. pfobabilities fom
customers served during a busy period @l4Vi/1/N queue is studied by Agarwal [5] by
splitting up the sample paths at suitable renewal epochgdHand Telek [11] studied
the busy period of MAP/PH/1system. Osogami and Harchol - Balter [29] study the
necessary and sufficient conditions to represent a gena@$s as a Coxian distribution
and as an application show that the number of stages whithestdr a busy period dura-
tion to be well-represented by a Coxian are solely deterdhinyethe service distribution
of the first job in the busy period. In [30], Akar and Sohrabggant a novel algorithmic
approach to compute the stationary probability distrinutdf finite QDB chains using
a hybrid of matrix geometric and invariant subspace methagssky studied first pas-
sage times in renewME/ME/1queues extensively and uses recurrence relations for their

solutions [14].

Existing literature on busy periods usually requires eitive arrival process or
the service process (or both) to be renewal and most procgetullying the embed-

ded Markov chain at the resulting renewal instants. Thedaiques are not extendible

11



to MEP/MEPsystems as there are no such renewal points available. effiomine, most
existing work rely heavily on transform solutions and in®@humerical inversions. In
this paper we allow both the arrival and the service prosegsbe non-renewal and se-
rially correlated. This allows us to study the effect of edation in both the arrival and
service processes on busy periods and related performagiciesn We use a combina-
torial approach that is analytic and the solutions are abthusing closed form recursive

expressions that are computed using dynamic programmimgagph.

1.5 Dissertation Structure

In Chapter 2, we give an overview of matrix exponential disttions, including a
list of common distributions with their matrix exponentiapresentations. We also give
a review of matrix exponential processes that allows uspgcesent processes which can
be serially correlated and present some examples of matparential processes and

present a brief overview of product (hat) spaces.

In Chapter 3, we study the probability thatustomers are served during the busy
period of anMEP/MEP/1system, where both the arrival and the service processdsecan
serially correlated Matrix Exponential Processes. A dyrgmogramming algorithm is
given to compute the probabilities for servingcustomers in a busy period and expres-
sions for the first two moments are derived. We study both tfieeteof correlation in the
arrival and service processes and the squared coefficiemtriaition on these probabili-
ties. The solutions give us qualitative insights into th&urea of the busy period of the
MEP/MEP/1system. The resulting algorithms are easily programmasilegudynamic

programming techniques.

12



In Chapter 4, we first characterize the conditiomah of two matrix exponential
processes as a matrix exponential process and use thasesfaton to construct the
distribution functions and Laplace transforms for the titnakes to traverse any given
sample path. We then use these individual sample path lemgtbsentations to derive the
Laplace transform for the entire busy period length and/éexkpressions to compute the
mean busy period length. In the later half of this chapterstuely how the correlations
in arrival and service processes effect the mean first passag when we now consider
a generic first passage from various starting levels. We toempute some busy period

related performance metrics for various arrival and serpiocesses.

In Chapter 5, we present an analysis of busy periods of MiE®/MEP/1queues.
We study how the moments and auto correlations in the aaivékervice processes affect
the busy period for these finite queues. Due to the restnisfioesented by the finite queue
boundaries and the effect of the boundary on the state timmsieading to the boundary,
certain queueing studies, including the busy period amalgse more intricate for the
finite system as compared to their infinite counterparts. \&fvd the corresponding
matrix quadratic equations for finite case and draw attentiothe (dis)similarities to
the matrix quadratic equation in relation to the infinite geieg situation and provide

numerical examples.

In Chapter 6, we offer some concluding remarks as well as stireetions for

future work.
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CHAPTER 2
MATRIX EXPONENTIAL PROCESS

2.1 Matrix Exponentials

A matrix exponential (ME) distribution [14] is a probabjylitistribution function
represented by the tupte p, B, e’ > wherep is the starting operator for the proce#s,
is the process rate operator, and the veetds a summing operator usually consisting of
all ones. The density and the cumulative distribution fiomg are given by
f(t) = pexp(—Bt)Be', >0, (2.1.1)
F(t) = 1—pexp(—Bt)e', t>0. (2.1.2)

The power moments of a matrix exponential distribution avergby
E[X"] = / t'dF(t) = n! pV"e, (2.1.3)
0

whereV = B~!. The matrixV is also known as the process time operator.

The Laplace-Stieltjes transform of a matrix exponentiatrithution is given by
F*(s) = / exp (—st)pexp (—Bt) Be'dt = p (sI + B) "' Be'. (2.1.4)
0

The class of matrix exponential distributions is identit@althe class of distributions
that possess a rational Laplace-Stieltjes transform alledistributions that have a ratio-
nal Laplace-Stieltjes transform can be represented as axneaponential distribution.

Distributions that do not have a rational Laplace-Stisltj@ansform can be closely ap-

proximated by distributions having rational Laplace-§gs transform (see [31]). These
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representations need not be unique.<lfp, B, e > is a matrix exponential represen-
tation of a distribution’, then< pX ', X BX !, Xe > is also a matrix exponential

representation of’, whereX is a non-singular matrix.

For any given rational Laplace-Stieltjes transform théopem of when there exists
a corresponding matrix exponential distribution was aslsled by Fackrell [17]. Given a
sequence of moments of a distribution the problem of whet asmatrix exponential
distribution of finite degree was addressed by Van de LiafviY], who also proposed

an algorithm for constructing a minimal matrix exponentegresentation.

The class of matrix exponential distributions have repregeons that closely re-
semble the phase-type distributions, which have an aaditi@quirement thgp and B
are probabilistically interpretable. Below are some exiaspf matrix exponential distri-

butions

e Exponential Distribution
The density functiorf(¢) and the Laplace-Stieltjes transforiti(s) of an exponen-

tial distribution
A

= - F*(s) = . 2.1.
f(6) = expl=At) A, F*(s) = 1" (2.15)
A matrix exponential representation is
p=[1], B=[\, ¢ =11]. (2.1.6)

e Erlang Distribution

A k-stage Erlang distribution where the time spent in eaelgesis exponentially

distributed with the rate is presented in Fig. 2.1 whose density functjtin) and
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Figure 2:k-Stage Erlang Distribution

its corresponding Laplace-Stieltjes transfoFifi s) are given by

£(t) = exp(—)\;!) N tk—l’ Fr(s) = ()\—)i\-s)k' (2.1.7)

A matrix exponential representation is

A A 0 - 0 -

1

0 A =X -0 )
p=|100 - --0,B=|0 0 X . 0]|,€=

1

0 0 0 A - -

e Hyper-Exponential Distribution
A k-stage hyper-exponential distribution where the timerdpn stage is exponen-
tially distributed with the rate; and the probability of starting in each stage is given
by «; is presented in Fig. 3. The density function of a k-stage hygpponential

processf(t) and its corresponding Laplace-Stieltjes transfdrhis) are given by

PO =D aexp—\t) i, F(s) = b, o s (2.1.8)
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Figure 3:k-Stage Hyper-Exponential Distribution

An matrix exponential representation is

DY [ 1]
0 )\2 0 , 1
pZ[al ay - ak]’B: .. e
00 - N 1

e Coxian Distributions
This class of distributions was introduced by Cox [31], whowed that any non-

exponential probability distribution with rational LapkStieltjes transform can be
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represented as a series of exponential stages with possitiiplex valued transi-

tion rates, and where with some probability the next stagmisred or with com-

plementary probability the process stopsk-Atage Coxian distribution is presented

in Fig. 4 where the time spent in stagis exponentially distributed with the rate

and the probability of entering that stagenis both \; and«; are possibly complex

valued. The Laplace-Stieltjes transforti(s) of a k-stage Coxian distribution is

given in partial fraction form by

) ki1 i )y
F*(s) = Zai H(l - oz,»)H ren

=1 j=1 j=1

mOCQ o S O
T

1—0[1 1—0[2

I —ag

Figure 4:k-stage Coxian Distribution

An matrix exponential representation is

)\1 —Oél>\1
0 o
pZ[l 0 0 0],B= 0 0

0 0

General Canonical Form from RLT

For any distribution that has a rational Laplace-Stieltjaasform,F*(s),

bo+bis+ -4 by_15m!

F*(s) = .
(s) ap+ai s+ -+ apy 8™+ 5™

18
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A matrix exponential representation p, B, e’ > for this distribution is given in

companion canonical form as

_ b 16 m—2bm— m—1bm—
p=[B (o (cprtes (qptten ]
_ - 1
0 1 0 0
0
0 0 1 0 /
B = ,e = [0
0
e () e () 0

It is to be noted here that even if a given density function hnamepr(;ser-]ted as a
phase type, the equivalent canonical form shown above @mbtioes not have any
phase type interpretations associated. Conversely, semstg functions which
cannot be expressed as phase types can still be represeamegdthis canonical

form as a matrix exponential .

e Phase Type Distributions
Neuts [19] introduced the phase type distributions by defira continuous time
Markov chain with an absorbing state. A phase-type distidoudefined by(a, T')
is the distribution of time until absorption in a finite-gatontinuous-time Markov
process with one absorbing state. The malfixepresents the transitions among
the non absorbing states and the vectoiis the entry vector giving the probability
distribution of the initial state. A matrix exponential regentation is given by

1

1
p=a;B=-T, e =
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e The following is an example of a distribution that does notéha phase type rep-
resentation. This distribution was introduced in [31] ahed tlensity function and
corresponding Laplace-Stieltjes transform are given by

ft) =8 ulsin(ut)]* exp(—2ut), t>0

16 p?

. 2.1.11
G120 (2 + Aot 8 11

F*(s) =

A matrix exponential representation using only real nuraper

110 1
p:[loo},B:u 1 -1 2],e=1]1
15 —15 8 1

The companion canonical representation is,

0 1 0 1
p:[loo},B: 0 0 1 e€=10
16 3 —16 2 64 0

For other properties of the matrix exponential distribnsipsee [14] and on methods to

computef () see [20].

2.2 Matrix Exponential Process

The matrix exponential process (MEP) is defined by the joamsity function of
first k-successive intervals between events where the inter éveet are matrix expo-

nentially distributed
f172 ..... k(l'l, Ce I'k) = p(O) eXp(—Bxl)L c eXp(—Bxk)Le’, (221)

then this describes an matrix exponential process, whérgis the state of the process
at time zero (also referred to as the starting operator),Jamgthe instantaneous event

generator matrix. The matrik reflects the rate of transitions between the internal state
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of the process immediately before the event and immediatedy the event. The induced
procesgp(0)Y*, (k = 0,1,...) describes the sequence of states immediately after the
start of a new interval at event times, whé&e= V L. If the process is assumed to be
covariance stationary, then tip€0) is the stationary vector for the process at embedded

event points. Below are examples of some matrix exponegpriaesses.

e Poisson process
In a Poisson process, the intervals between consecutivéseaee independent and
identically distributed exponential random variables. @éid8on process with the

rate\ has a MEP representation given by

p(0)=[1], B=[)\, L=\ (2.2.2)

e Matrix Exponential Renewal Process
Renewal process defines processes whose inter-event tieneslependent of each
other. The event generator matrix for renewal process wimbseevent times are

characterized by matrix exponential distributions is gibg
L = Beé'p. (2.2.3)

Note that the rank of the matrik is one for a renewal process.

e Markov Arrival Processes (MAP)
The Markovian Arrival Process (MAP), which is a generali@atof the PH distri-
bution was introduced by Neuts [21] to model non Markoviampprocesses. A
MAP is a non renewal process represented by two matribgs D, ) rather than a
matrix and a vector as in the phase type distribution. Theima, is similar to the

T matrix for a PH distribution, which contains the transigdsetween the transient
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states of the underlying Markov chain. The rows of the maipix describe how
the transient states of the underlying Markov chain aretezed after an absorption

event.The equivalent MEP representation is given by

B=-Dy,L=D,. (2.2.4)
The Markov modulated Poisson process (MMPP) is a special cbBIAP where
the matrixD; is diagonal i.e., event transitions do not result in charfgeaie.
The expression for the lalgeovariance, the covariance between the first interval
and the(l + 1)this

cov X, X1 = pV(Y)'Ve — (pVe')?, 1>0.

The auto-correlation at lag-r[/], can be found by dividing co, X;] by the

variance
var[X] = 2pV?%e’ — (pVe')>

Note that B and L are not limited to being Markovian rate matrices, so everyiMA
is an MEP, but not vice versa (see also [22]). By implicatgtationary MEPs are
dense in the family of all stationary point processes as,WeIB]. For additional

details see [14,24-26].

2.3 Concurrent MEP’'sand Hat Spaces

It is not unusual that multiple processes each acting om tvem operator spaces
act concurrently on a given state. Kronecker product is oag @f representing

the embedding (or combining) of these two disjoint operafmaces, into a bigger
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product space. In general K | is anm; x n; matrix operating on objects in space
1, andK, is anmsy x ny matrix of space 2, the Kronecker productlsf; and K »,
denoted byK; K K, is the matrix of sizdm;m,) x (niny) that is obtained by

multiplying each element ak(; by the full matrix, K.

As a particular example, let an arrival process represdmyed p,, B,,, L,,e, >

and a service processes representeetpy,, B, L, e, > act concurrently on the
internal state of the system. Using Kronecker products weccastruct a product
space which represents the concurrency of these two progessibedding both

the arrivals and services into the product space as folla4f [

€, =e,® I, e.=1,®e,
B,=B,®1I, B,=1,® B,
L,=L,®I, L,=1,0L,
€, =e,® I, e.=1,®e,

where,I, andI, are identity matrices in the arrival and service spacessely
and the symbol (called caret or hat) represents a process in the embedded.sp
Once the matrices are embedded into the product space,rtbercent process rate

matrix for example is given bﬁl + E\a
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CHAPTER 3
PROBABILITY MASS FUNCTION FOR NUMBER OF CUSTOMERS SERVED
DURING THE BUSY PERIOD OF A CORRELATEIMEP/MEP/1SYSTEM

3.1 Introduction

In this chapter we study the probability thatcustomers are served during the
busy period of atMEP/MEP/1system, where both the arrival and the service processes
can be serially correlated Matrix Exponential Processedyamic programming algo-
rithm is given to compute the probabilities for servingustomers in a busy period and
expressions for the first two moments are derived. We stuttythe effect of correlation
in the arrival and service processes and the squared ceaffali variation on these prob-
abilities. The solutions give us qualitative insights itite nature of the busy period of the
MEP/MEP/1system. The resulting algorithms are easily programmasilegudynamic

programming techniques.

The busy period for a system is the time interval between anysticcessive idle
periods. It starts when a customer arrives to an empty syatehends when the departing
customer leaves the system idle for the first time theredftaffect, a simple busy period
is equivalent to a first passage from level 1 to level 0. Funtioee, the first passage from
a higher level sayl*to ‘ (I — 1)’ is also of interest. Here, if we lét- 1 denote a threshold,

we are interested in the transient behavior around thistioid.

DefineD,;_, as the first passage process wherein the system transitoonsdvel

[ to levell — 1 ending when level — 1 is reached for the first time. In this chapter we
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derive recursive solutions to find the probability for sagyin’ customers during this first
passage in aMEP/MEP/1queueing system, and we derive moments for the number of
customers served during this first passage. We then syzecthk solutions obtained to
the case of a busy period and study the effect of correlatiathe arrival and service

processes and the squared coefficient of variance on thelsalplities.

3.2 Moded Description

3.2.1 QBDProcesses

A finite QBD process is a Markov process with infinitesimal giettor Q [36],

given by
_BO a -
Bl A1 AO
~ A, A A
Q= 2 A0 (3.2.1)
A, A Cy
A, Cy

Define the embedding operataks, reflecting an arrival event occurring before the ser-
vice andH , representing a service event occurring before the arriegd mto theQBD
space as follows:
Ha = (Al)ile, (322)
H, = (A)'A,. (3.2.3)
TheseH operators allow us to track the path evolution by embeddirlyeaevent transi-

tions in the continuous time Markov chain. At each observadsition point, the appro-

priate H-operator is applied (and normalized if needed) to updaérnternal state of the
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discrete time Markov chain, thus allowing both the arrivad @ervice processes involved

to be non-renewal.
The conditional probability that an arrival event (r4) occurs before the service
event (r.v.S), given that the starting vector j£0) is given by
PrfA< S | p(0)] =p(0)H € (3.2.4)
where the trailing2’ sums up the probabilities distributed in vector form andssally a
column vector of all one’s of appropriate dimensions.
In a QBD system, the conditional probability that two sustes events are both

arrivals, given that the process startiit) is

p(0)(H,)¢". (3.2.5)

The corresponding discrete-time QBD process is governed by

0 H,
H; 0 H,
P = H, 0 He : (3.2.6)
H, 0 H,
H, 0

WherEHl = (B())ilA(),HQ = (A1>7100,H3 = (A1>71.Bl, andH4 = (Cl>71A2.

In the particular systems that we study here will hd¥g = H , reflecting that
the service process is suspended if no customers are pregdiout effecting the internal

state. Also, in our caséd, = (I — H,) 'H,.
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3.2.2 H Operators

Let the arrival and service processes be representedBy, L, > and< B,, L, >
respectively and letd and .S represent the corresponding random variables. The con-
ditional probability that an arrival event occurs before #ervice event given that the
starting vector i®(0) is given by

—~

PLA< S | p(0)] = p(0)(B, + B,)'L.e.

whereB, = B,® I, , B, = 1,8 B,, L, = L,® I, andL, = I, ® L,, and®

is the Kronecker product operator which embeds the arrindl service processes into
system space. Her(al/S\a + B\S)*l represents the average time that both the arrival and
service processes are concurrently active,fi\gdepresents the arrival event occurring.
The trailinge’ sums up the probabilities distributed in vector form andsigally a column

vector of all one’s of appropriate dimensions.

In anMEP/MEP/1system, the conditional probability that two successiveney
are both arrivals given the system starts in sg@) is p(0)(B, + B,)'L, - (B, +
B\s)*lf’;e/. The operatordd , for arrival event happening before the service &hgfor
service event happening before the arrival are given bynaitoning on the initial state

of the system.

H,=(B,+B,) 'L, and H, = (B, + B,)"'L,.

Essentially thes&f operators allow us to track the path evolution by considgrin
event transitions embedded in the continuous time MarkavchAt each observed tran-
sition point, the appropriat&l operator is applied (and normalized if needed) to update

the internal state of the discrete time Markov chain, thisaahg both the arrival and
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service processes involved to be non-renewal. We summathaeH , and H; are for

different systems in the Table. 1.

H, H,
U = =
M/ME/1 (M + B,)~ 1A (M + B,)"'B,e.p,

ME/M/1 || (B, + pI)"'B,é.p, (By + p) 'y

MEP/MEP/1| (B, + B.) 'L, (B.+ B,) 'L,

Table 1: H operators for different systems

Please note that thH operators introduced here differ from the similarly named

operators in [14].

3.3 Conditional Sample Path Analysis of First Passagesin an MEP/MEP/1 System

Consider a system that just had a transition from Iéisell) to levell and letp(()
be the current internal state of the system. The events thatthe Markov chain repre-
senting this system are either an arrivAl {) or a service completionH{ ;). As defined
earlier, letD,;;_, represent the first passage process wherein the systerititrasmgom
level ] to levell — 1 ending when level — 1 is reached for the first time. Every sample
path that belongs to the proceBs;_; can be represented by a successiodgfs and
H’s. To compute the probability of occurrence for each of ¢hesmple paths we have

to pre and post multiply théZ operator string withp(l) ande’ respectively.
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Figure 5: Paths serving exactly 3 customers during the fass@geD; ;1

The number of possibilities to serve exactlycustomers during this first passage is
given byC,,_1, the(n — 1)t Catalan number [39]. The!" Catalan numbe€’, is com-
puted either asni—1 (2:) n > 0, or from the recursive definition for Catalan numbers
C, = Z?:‘Ol C;C,_i_1, Cy = C7 = 1, by using dynamic programming techniques. For
example, exactly three customers can be served during pdissage from levélto level

[ — 1 by following one of the two paths shown in Fig. 5 and the prolitgds associated
with each of those paths apél) H ,H ,H ,H ;H ;¢’ andp(/)H ,H ., H ;H .H e’ respec-
tively. In the M/M/1 case these two paths would be equi-probable with a probabfii

A28

nT and hence the probability for exactly three customers bsénged during);;_; is

. 2,3
given by(iﬁr—[jﬁ.

A busy period is a special case of this first passage whenl. Let N;;_; be
the discrete random variable for the number of customex®deaturing the first passage

D, ;—1. Hence, in artM/M/1 system,

)\n—l n
o n > 1.

d, 1 £ Prob =n]=C,_1—-—, >
1 [Nio=n] 1()\ At

In the case of MEP/MEP/1system, the matrices involved are generally non-
commutative H,H, # H,H,) and the paths have different probabilities associated

with them. The relationship among these different paths skave a given number of
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customers during this first passage leads us to define a sstiofence relations for these
probability matrices, resulting in a direct generalizatiof the recursive definition for

scalar Catalan numbers to matrices.

Yo

H, Hs vy

............ n—2

oL
P(0) ws

Figure 6: Paths serving exactlycustomers during the first passagg;,_;

If N;;—1 = 1, then the first arrival that started the process is followgd bepar-
ture; the probability of this occurring j3(/) H ;€’. In all the other cases, at least one more
arrival (H ,) occurs before the first departurl(). We consider the remaining process
(after the second arrival), as two sub processes, whefkg > 0 customers are serviced
before returning to levélfor the first time followed byt, customers served before finally
returning to level — 1 (See Fig. 6). In this respect, each of these sub-paths itasitoia
Dyck path [38]. Thus exactly customers can be served during this first passage ()
by servingn — ¢ (k1 = n — i) customers before returning to levefor the first time,
followed by servingi — 1 (ks = 7 — 1) customers before the last customer departs the
system, followed by the final departure event returning gstesn to level — 1 for the

first time.

The above insight and explicit enumeration of all the pdsspgaths for a few
cases allows us to define the following set of recurrenceioals. Please note that these
derivations are independent of the current state of theesyg$as long as the server is

active). Let,
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Y, =1,
Y, =H,) Y H.Y,,
Y2 = HaYleYO + HaYOHsYla

Y, 1=H,)Y, HY,+Y, sHY +...+Y H)Y, ,,
Yn = Ha [Yn_lHSYQ + Yn_QHSYl + ...+ YQHSYn_l] .

whereT is an identity matrix of the dimensions of either the seryiogcess or the arrival
process whichever is adEP and it would be in the product space if both of these are
MEPs Y, is the operator that transfers the internal state of theesysts the system
transitions from level back to levell while traversing only statels! + 1,/ + 2,... and
after having served exactlycustomers. HereY; is independent of the leve] as all
the information that differentiates transitions for diffat levels is present in the system
starting vector on whicly”; operates, an&”; depends only on the number of arrivals and
departures. Furthermore, the opera&QtH , represents serving exacily+ 1) customers

while transitioning down by one level. In short

Y, = I,
n—2

Yoo = ) HY.i2HY; n>Ll
1=0

Please note the similarity between the above definitiofYfpr; and the recursive
definition for Catalan numbers. Indeed, if one would unrélvelrecurrence relation, there

would beC,, _; terms in the expression f&f,,_;. Also note that the definition faY’,,_; is
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order preserving and hence the correlation that is prese¢heiarrival and service events

are effectively captured therein.

Now the probability that exactly customers are served durihyg;_, conditioned

on the internal system state beingiii) at the transition from level— 1 to levell is given

by,
dny = ProbN, 1 =nl=p(l)Y, H.e', n>1.

wheree’ is a column vector of all 1's whose dimensions depend on venette system is
anM/M/1, M/MEP/1, MEP/M/1or anMEP/MEP/1 For theM/MEP/1andMEP/M/1], its
dimension corresponds to either the service processeg @artival processes dimension
respectively, and for aMEP/MEP/1systeme’ is in the product space given lay = eAge;,

WhereeAjl = e/ ® I,. We show the computation of the starting vector for a nornoaalyb

period in section (3.4) and the starting vector for a higheel first passage in Chapter(4).

3.3.1 Moments for The Number of Customers Served Dufng ,

The z-transform for the number of customers served during th&t fiassage

Dy is

y(z) = Z Prob[N;;—1 = n].2" = b1z + byz? + ...

n=1

SinceY’,,_, forms the core ofl,,;, one can define the matrixtransformY (z) =

Yozl +Y 122 +Y 22 + ...

From the definition ofY”,, one arrives at the matrix quadratic form f¥i(z) as
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follows:
ZlY() = Izl
Y, = (H,Y 2'H,Y(z')

BYy = (H,Y 12°H,Y 2! + HY 02  H,Y 12%)

Y, = (Ho Y 12"H Yoz + Y, 02" THY 1224+ ... + Yo H,Y, 12"])

Y(2) = 2I4+H, (Yo' +Y 122+ Y23+ VH,(Yoz' + Y 22+ Y22 4 ..)

Thus,Y (z) satisfies the matrix quadratic equation

Y(2) =21+ H,)Y(2)H,Y (2). (3.3.1)

This matrix quadratic form fol¥ (z) (equation (3.3.1)) is closely related to the
common matrix quadratic equation for the mat@xthat occurs in literature [33], [35].
In fact, “Y' (1)H," is equivalent to the matriG if the system under consideration has
MAP processes, antt' (1) H; extends the functionality ofs to our current more gen-
eral situation. The current derivation is a combinatorgpr@ach and implemented with
dynamic programming techniques to keep the computatiarsisan control. Also, the
matrixY is constructed from the individual components as a limigrnacess which gives

us qualitative insights into the recursive structure oftibey period.

Taking the derivative o (z) in equation (3.3.1),

Y'(2)=I+H,) Y (:)H,Y(2)+ H)Y(2)H,Y'(2),
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and evaluating at z=1, gives

Y'(1) =TI+ H,Y'(1)H,Y(1)+ H,Y(1)H,Y'(1), (3.3.2)

HereY (1) should be directly computed from its individual componexgs lim-
iting process. Alternatively, if the busy period is knownb® recurrent{ < 1), thenY
can be computed by a fixed point iteration on thieansform equation fo¥ (z) atz = 1.
Empirical studies show that this fixed point iteration doesverge when the busy period

is recurrent, and a proof will be shown in future work.

Similarly, we can comput&”(1) either by iteration on equation (3.3.2) or as a

limiting process. The mean number served during this candit first passage is given

by

E[N, 1] =p()Y'(1)H €' (3.3.3)
Similarly, the second moment is computed as,

E[N?_,]1=p()Y"(1)H e +p(l)Y'(1)H e (3.3.4)

whereY”(1) is computed either as a limiting process or by iteration on
Y"(1) = H,)Y'(1)H,Y +2H,Y'(1)H,Y'(1)

+H,YH,Y"(1).

If the H's are of sizem by mthen the computation d¥,, would take3n matrix
multiplications and» matrix summations. Hence the time complexity is of or@¢ém?n),
which is computationally manageable, especially sincethgix dimensions do not grow

with path lengths. The matriX” can be obtained by iteration on the z-transform equations
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usingO(m?) computations per iteration. Also the space complexity fanputingY” is

of orderO(m?n).

3.4 Number of Customers Served in Busy Periods of an MEP/MEP/1 System

As mentioned in the previous section, the busy period is aeigpease of the first
passage proceds;;_; when! = 1. Let the internal state of the system at the start of a
busy period be represented py,. Assuming that the utilization of the system is less than
one p < 1) and hence that a busy period always ends, this startingvst) is the
normalized invariance vector for the start of a random buesyop and is the solution to

the following equation
pbpYHSVaLa = Pup-

i.e., p,, is the normalized left eigenvector corresponding to anreigleie of 1 for the

matrixY H,V ,L,. The intuition is that if the process startgiy), at the start of a random
busy period, its value at the start of the next busy periodvisrgby traversing one of the
possible pathp,,Y’, followed by the final departurgl ; (back to state zero), after which
only the arrival process is active until the next arrival@v®, L,, thus starting the next

busy period.

Once the starting vector for a busy period is known, the esgpo@s for Prohy; , =
n] and E[V; o] follow directly from the results in the previous sectionetite, the proba-

bility that exactlyn customers are served during a busy period is given by,

dn,l = PI’Ob[NLO =N ] = pbpYn,lﬂse/, n > 1,
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and mean number of customers served during a busy period is
E[N1,] = p,,Y'(1)H €.

We summarize the procedure to compute these metrics in itthgod..

Algorithm 1 To compute ProlV; o = n] and mean for the number served during busy
period of aMEP/MEP/1system

1: SetupH, and H ; from the arrival and service process representations.
2: ComputeY by a fixed point iteration on

Y=I+H,YH,Y,

using,Y© =1
YO = I1+H,YTVH, YY) >0,
Alternately,Y can be computed as a limiting process from the summatiordofidual Y, s.
3: Find p,,, the left eigenvector corresponding to an eigenvalue of ¥1éZ V', L,.
4: To compute Probif; o = nJ:
e ComputeY,,_; using, Yy =1,

n—2
Yo = ) HiYuioHY;, n>1
i=0
e Probability that exactly: customers are served in a busy period is
Prob[Nl,o = n] = pbpYn,lee', n > 1.

5: To compute the mean number served in a busy period:
e FindY’(1) using fixed point iteration on

Y1)=I+H,Y'(1)H,Y + HYH,Y'(1).
e Mean for number served is given by,

E[NL()] = pbpY,(l)Hsel.
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3.5 Numerical Results

Using the general derivation for tfrdEP/MEP/1system presented above, we
compare our results to existing solutions for the numberezeduring the busy period
for anM/M/1 and anM/D/1 system. We then compare and validate our analytical results
with trace driven simulations favi/MEP/1, MEP/M/1andMEP/MEP/1systems. Finally,

we perform parametric studies on BiEP/MEP/1system using our analytical solutions.

3.5.1 Comparison to M/M/1 and M/D/1:

For theM/M/1 case, the probabilities that+ 1 customers are served in a busy

period is given by [40]

1 2n )\nMnJrl
Prob[v, = 1] = >0
P = o () e 120

where the combinatorial multiplier is thé" Catalan number.

The mean number served and the variance for number servad M/M/1 system

busy period are given by

1
E(N) = =,
_pl+p)
andVar(N) = A=y

Our results match exactly with this closed form solution,aasiwe mentioned in Section

3, we consider our derivation as a generalization of Catalenbers for matrices.

A closed form explicit result is known when the service dttion is determin-

istic, anM/D/1 system [10]. In this case, the probability:ohumber of customers served
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in a busy period f,) is given by the Borel distribution

1 ()\Tn)n_le—)ﬂ'n n>1

fn:E(n—l)! ’

Consider now the ME density with representation

< ps, Bs, e5 >, where

= 3 7 1 _1_
Ps 1 i 160 200 7680

o
@)
N
)
@)

B; = 0 0 0

[\G][VV
[es}

0 0 0 0

[\][oV]

480 —576 300 —90 15
es = [1 00 0O }
This ME form represents the function

1
f(t) = g (12939 — 14896 cos (3t) — 9504 sin (31)

+2017 cos (61) + 4344 sin (61))e "

The aboveME is an example of a distribution that is not also of a Phase Iygoause the
density is equal to zero for various values of t as can be e 7. This distribution has

a mean of 1 and” of 5. The ten fold convolution of this density has a mean of 1.0and
squared coefficient of variation?) of 0.004, and is used to approximate a deterministic
distribution. With thisME as the service process representation and with a Poissea arr
stream with a mean rate = 0.8, we get the probabilities shown in Table 2. Please note

that even with the approximation to the deterministic distiion, the results are very
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Figure 7: ME Density that touches the x-axis multiple times

Table 2: M/D/1 Comparison, Utilization = 0.8

n

Borel distribution
PrOb[]Vl,() = n]

Our Result
PrOb[]VLO = TL]

0.4493289641

0.44992647760(

0.1615172144

0.16140991710(

0.08708923515

0.08697831412(

0.05565399583

0.05556846003(

A = —— aa =—

QbW N

0.03907336297

0.03900843250

close to the known Borel distribution.

3.5.2 MAP/MAP/1 System

Since MAP's form a subset of th&EP's, we can compute these probabilities

(Prob[N; o = n]) for a MAP/MAP/1system. Consider BIAP/MAP/1system where the
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arrival is represented by

—7.1041 0 6.9916 0.1125
DO = ) Dl = )

0 —0.3959 0.1125 0.2834

and the service process is represented by the rate matrices

—9.4721 0 9.3221 0.15
DO = ’ D, =

0 —0.5279 0.15 0.3778

This is equivalent to aMEP/MEP/1system where for both the arrival and service
processes th&’s and L’s can be derived from the correspondifdy’s and D,’s, i.e.,
from the arrival proces®’s we can getB, = —D,, L, = Dy, and from the service
processD’s we get,B, = —D,, L, = D, respectively. This system has a utilization
of 0.75 with a correlation decay parameter of 0.7 ahdf 9.0 for both the arrival and

service processes. The corresponding probabilities amersin Table 3.

Table 3: MAP/MAP/1 System, Utilization = 0.75
‘ n ‘ Prob[N; o = n] ‘
0.63060456
0.12076481
0.05671077
0.03417086
0.02313089
5| 0.13461808

VI OB W N
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3.5.3 Simulation Results

For simulations, we generate traces using an ME processstatrelated. For
this purpose, we use a hyper-exponential distribution st#inting vector ), where the
rate matrix B) is adjusted for the required (squared coefficient of variation) and the
event transition matrix is adjusted to control the correlation decay. It hasNtierep-

resentation
2])1 0

, L= Be'p,

pZ[pl 1—p1}, BZA[

wherep; = % + % gzj. This process is uncorrelated. In order to construct cated|

processes with geometrically decaying covariances tlzaeshe same marginals, we use

the approach presented in [34]. Defib€’ for —1 < v < 1 as
L"=(1-~)(Be'p— B)+ B. (3.5.1)

The L") thus constructed introduces geometrically decaying tioss in the process,

while leaving the marginals (and therefore tRginvariant.

353.1 M/MEP/1 System

For anM/MEP/1 system, the effect of increasing theon the probabilities forn
customers being served during a busy period while keepi(aprrelation decay param-
eter) at 0.99 is shown in Table 4. As can be seen from the tdi#esimulation results
follow the analytic results closely. As thé of the service process increases, there will
be many requests with short service demands (comparedetairival times), hence in-
creasing the count of busy periods in which fewer customersearved. However, there

will also be arrivals that have longer service demands, ibceshey are correlated, they
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tend to cause fewer very long busy periods, hence not caomitidp significantly to the

count of busy periods.

Table 4: Simulation vs Analytical for M/MEP/1, Utilization0.75

=1

2=9

c? =100

Analytical | Simulation

Analytical | Simulation

Analytical | Simulation

Prob[N, = n]

0.571428571

0.57117927

0.715999851

0.71601889

0.726246184

0.72640603

0.139941691

0.139843148

0.145404403

0.14564553

0.144367891

0.144379278

0.068542869

0.068994283

0.059055301

0.059103117

0.057396756

0.057232489

0.041965022

0.042159178

0.029981189

0.029880241

0.028524242

0.028464697

0.028776015

0.028677701

0.017047444

0.016780497

0.015876653

0.015988375

0.021141562

0.021184264

0.010385734

0.010434037

0.009468192

0.009456229

0.016272223

0.016016045

0.006628639

0.006665474

0.005915325

0.005884958

0.012951361

0.013016432

0.004374999

0.004417871

0.003821632

0.003816901

0.01057254

0.01059373

0.002961674

0.002941219

0.002532298

0.002588751

Bl ©| o ~| o) o B w| D] || 3

0.008803257

0.008900555

0.00204508

0.002003509

0.001711516

0.0017103

3532 MEP/M/1 System

As can be seen in Fig. 8, as theof the arrival process increases, the probability
for only one customer served in a busy period decreaseshér atords, the number of

busy periods serving one customer is decreasing.

The effect of increasing th€ of the arrival process in a correlated vs non-correlated
(MEP/M/1vs ME/M/1pystem is interesting to note (See Fig. 9). Whenttigincreasing
for the non-correlated case, the number of busy periodsenegrer than five customers
are served decreases and the busy periods with more numbestomers served gradu-
ally increases, hence the probability for one customeresenv a busy period decreases
(Prob[N, = 1] = 0.404 for a* = 100 andy = 0). On the other hand, when the arrival pro-

cess is highly correlated, there are a few busy periods thadremely long and there are

42



0.6

‘ cn2=1, ‘Analytical‘
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¢"2=100, Analytical--------
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PrObWL(]
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Number of customers served

Figure 8:MEP/M/1: Effect of increasing? in uncorrelated case

fewer busy periods where only one customer is served (asa@@upo the normaw/M/1
case). Because of these extremely long busy periods andeadedn total busy period
count, the probability that only one customer is servedgases (Proby, = 1] = 0.974 for
ac? = 100 andvy = 0.99), even though the absolute count of busy periods where lgxact
one customer is served decreases. Also notice from Fig.t9rtfad the three cases for
variousc? values, the probabilities for one customer served in cateel case tend to be

segregated and very different than the probabilities irutt@rrelated case.

3.5.4 Parametric Studies Using thi=P/MEP/1Model

In this section we show how the valuesdfand~ affect the system under study.
For this purpose we use the general derivation used foMlBE/MEP/1system. With
~ fixed at 0.99 for both the arrival and service processes, wease the value ef for

both the processes from 4 to 100 while keeping the systeimattdn at 0.75. A:* of 100
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Figure 9:MEP/M/1: Effect of correlation on Proby, = n]

and~ of 0.99 represents a system where the arrivals and servinardis are both very

erratic and correlated (bursty). Fig. 10 represents thecef

It should be noted that the probability density for the nungssved for a highly
correlated and varianEP/MEP/1system matches very closely with a simpi#M/1
system. For example, the probability for serving exactlg eanstomer has a value of
0.712 for ac? of 4 and goes down to 0.580 when tkeis 100, which is very close to that
in anM/M/1 system, 0.571. This result is quite counterintuitive, sime would expect
the busy periods of a highly correlatstEP/MEP/1system to be somewhat different than
that of anM/M/1 system. Note however that only the relative count of busyogsrthat
serven customers stays the same. Thdéor number served during a busy period however
changes from 5.25 for adl/M/1 system to 210 for aMEP/MEP/1system. Hence in an
MEP/MEP/1system, there are some busy periods that are extremely\emgleough the

averages look similar to ad/M/1 system.
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Figure 10:MEP/MEP/1 Effect of increasing?

3.5.4.1 Effect of Third Moment on MEP(r, 5, 3, v)/M/1 Queue Busy Period

Consider a queue where the marginals of the arrival processhearacterized
by the first three reduced moments and the correlation demaymetery, of the arrival
processes. We use this characterization so that the impalee dhird-moment on the
expected length of the busy periods can be studied. Suchrigalatistribution can be

represented in LAQT with the moment canonical form [44]

-1 1 r1 , 1
pa - [ 1 O :| ! Ba - 7“2*1“% T3*2T1T2+T:f ) ea - 0 . (352)
r1 ro—r?

The bounds on the first 3 moments are given by Table 5 whiclpredeiced from [20].

The bounds on the value of the correlation parametfar fixed first three mo-
ments can be found in [20]. Let the mean service rate be deliped In this case we
assume the first reduced moment of the arrival process isatzed to 1 and-2 is set to

3. Plots. 11,12 and 13 show the effect of the third moment emtban length of busy
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Table 5: Bounds for the First Three Normalized Moments of R)Efistributions

ry >0
hypoexponential hyperexponential
2rf <y <rf r? <1y
(= hy <0) (&0 < hy)
7‘1(2h2+r2)+2(—h2)% S’f‘g % <T3
rg < ri(hg + rg) (&0 < hg)

Effect of Third moment on Busy Period

"Util - 0.55.txt’

E[b]2'25

Figure 11:MEP(r1,r2,r3;,)/MEP/1 Effect of Third moment, Util:0.55

periods as the utilizations and the correlation decay param are varied. A noticeable
observation is the effect of the third momentatabove 0.7. As the third moment de-
creases from 100 to 10, the mean busy period length increasis3 reaches a certain
critical value and decreases for further decreas8.mhis effect tends to be present at all

higher utilizations and the criticaB value tends to move higher as utilization increases.
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Effect of Third moment on Busy Period

"Util - 0.83.txt’

E[b]

Figure 12:MEP(r1,r2,r3;,)/MEP/L Effect of Third moment, Util:0.83

3.6 Summary

In this chapter we derived closed form recursive solutiensampute the prob-
ability density forn customers served during the first passafg, i, in a correlated
MEP/MEP/1system. These conditional first passages provide us with tostudy sim-
ilar first passages starting from a random or an environrdefited starting vector. We
then analyzed the busy period oMEP/MEP/1queue as a special case of these first pas-
sages and studied how these performance metrics are dffgctbe correlation in arrival
and service processes. This approach to the busy pericslug\gualitative insight into its
structure and lays a general framework to analyze othesigahsystem properties. The
algorithms developed are easily programmable using dynanegramming techniques

and can be incorporated into real life performance anatysis.
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Effect of Third moment on Busy Period

"Util - 0.9.txt’
"Util - 0.99.txt” -
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200

150 -
100

Figure 13:MEP(r1,r2,r3;y,)/MEP/L Effect of Third moment, Util:0.9, 0.99
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CHAPTER 4
BUSY PERIOD LENGTH AND HIGHER LEVEL FIRST PASSAGES

4.1 Introduction

In this chapter we first characterize the conditionah of two matrix exponential
processes as a matrix exponential process and use thaseefaton to construct the
distribution functions and Laplace transforms for the titnkes to traverse any given
sample path. We use these individual sample path lengtleseptations to derive the
Laplace transform for the entire busy period length and/éexkpressions to compute the
mean busy period length. In the later half of this chapterswudy how the correlations in
arrival and service processes effect the mean first passagavhen we now consider a
generic first passage from levdb a levell — 1 for various values of (as opposed to the
transition from level 1 to level 0). We then compute the plolizes that the sample paths
are of height greater than a given threshold during a givehgaissage and also compute
and compare the moments for number served and the mean tirtieefbrst passage for
various levels against the same performance metrics forraaldousy period for various

arrival and service processes.

4.2 Conditional Density for the min(A,S) Process

Consider two contesting processes, A and S (representingalfs and Service

completions), both represented by the corrosponding retponential notations p,, B,, e, >
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and< p,, B, e; >. Then the conditional density for thein process given that the ar-

rival process occurs before the service process is,

Primin(A,S) =tandA < S]
Pr{A < 5]

Primin(A,S)=t| A< S] =

p, exp(—B,t)L,e,p, exp(—Bst)es
P.py(B. + B.)'L.é.e,

- = L, _
= DPdPs exp(_(Ba + Bs)t) . — — = €,E¢
paps(Ba + Bs)ilLaeaes

The expression in the denominator is the probability thaAaival event occurs
before a Service completion and hence is a scalar (less Jhaayky. The effect of con-
ditioning on the fact that arrival occurs before servicentyis that the Arrival processes
gets effectively accelerated (frof, to %). This in essence is the effect of knowing that

additional piece of information. If we consider this as a meatrix exponential process,

we no longer have the usual equallBe = Le since(é\a + B\S)e}es + Ij;e]es. But

nonetheless this is a valid matrix exponential densityaiit easily be seen that the integral

of the above conditional density fronto co equalsl.

4.3 ME Representation for The Length of a Sample Path

Consider a sample path during a busy period where immegiattdr the start
of a busy period, we have an arrival followed by a departuentvThe length of this

sample path is the convolution of two stochastic processpsesenting the occurence of
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an arrival event followed by a departure event (represemse'dD”).

t
— L, T L,
Pr[acADw — tldtl] = / pbp eXp(—(Ba + Bs)tl)a— eXp(—(Ba + BS)(t_tl))a_dtl
1 2
t1=0

(4.3.1)

— p, (B, + B.) 'L.é,e, — 5 __pPH. o
wherea; = p,, (B, + B,)" L.e.e, = p,, H.e,e, anda, = ppr-IaeAaeSHSe“eS

The above density of sample path (“AD”) can be written in arirm@&xponential
form using the following< p,,,, By, Ly, €5, > Where,

< Ppp> Bpps Lyp, €5y > Where,

ppp:[pbp 0]

1
(Ba+B.) 5 0 0
B, = e Ly = L, y €pp =
0 (B, + B,) Pupl2e e, 1
ppraea s P
€4€s

The equivalence of the above two forms can be verified by caimgpthe Laplace
transforms of the above two representations. Egts) and F;(s) represent the Laplace
transforms of the convolution form and the matrix exporedrform respectively. The

Laplace transform of the matrix exponential representaiegiven by

F3(s) = p,,(Bpy + sI)*lepe;p. (4.3.2)
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Inverse of a block matrix can be written as,
-1
A B I —-A'B AL 0 I 0

C D 0o I 0 Sy ~CA™! I

whereS 4, the Schur complement of A is given by, = D — CA™'B

[ (By+ B, +sl)'La

(Bpp +sI)™ =
0 I
(B, + B, + sI)7! 0 I 0
0 (Bo+B,+s)™t | |0 I
| BaFBitsDT (Bo+ Bo+sD) 7 LB, £ B+ 517!
- 0 (B, + B, + sI)™
Hence,
F5(s) = | ppy(Ba+t Bs +sI)™" p(Ba+ B, +sI)~'La(B, £ B +s1)7" |
-
0 0
0 L 1
| €aes |
-

= 0 py,(Ba —®+ SI)_IL“ (B, —l—/B:—F sI)_lLS

(o5} a2

1

—

€a€s

= pbp(Ba+Bs+3I)_1a_j(Ba+Bs+3I)_la_;eaes:Fl (8)
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Hence both the representations are equivalent, and thensimatrix exponential
representation corresponds to the convolved sample patitgeln the next section we
show the matrix exponential form for the sample path "ADD'h(®al followed by two
consecutive departures) and compute the conditional taglansform which will then

be used to derive the moments of the busy period.

4.4 Conditional Laplace Transform of a Sample Path During a Busy Period

Let us consider all possible paths during which exactly twstemers are served
during a busy period. As the busy period starts with the finstiag customer, there is
only one such path possible, another arrival followed by tensecutive departures, i.e.,
“A-D-D”. The probability of this path being taken 'mpHaHSHSeAaeS. The matrix ex-
ponential representation for the length of this busy pesgiven by< p,,,, B,,, L, €,, >

where,
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—~ —~ _La
(Ba * BS) Ppraé;es 0
—_— L.
B,+ B s
By = 0 (Bo + B.) Py H —~
——H eqe;
ppraeaes
[0 0 (B.+By) |
0 O 0
1
0 0 0
Ly, = » €pp =
1
. —
0 0 ppraHsS p— | €a€s |
L ppraHsé;es e |

The Laplace transform for this path is given by

*(o) — F.(s) F(s) F(s) =~
F*(s) = PbpppraeAaeS p,H.H.e.e, p, H.H.H.e.e, €,€5
ppraé—;es ppraHsé\aes

where F(s) = (B, + B, + sI)"'L, and F:(s) = (B, ¥ B, +sI)\L, are

matrices.

The conditional Laplace transform for this path, condiédmy the path-'AD D”

being taken (which occurs with a probabiliyy, H . H . H .€,e,), is given by,
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Fi(s | “ADD”) = py, F,(s)F((s)F(s)€aes

4.5 Mean Length of aBusy Period

Noting the similarity between the above formulation for tunditional Laplace
transform and the probability of a certain path being takemng) a busy period, we can
derive the joint transform equation for the number of custsrserved during a busy

period and its length. We have,

Fi(s) = I
Fi(s) = F(s)Fy(s)F(s)F(s)

Fy(s) = Fo(s)Fi(s)F(s)Fo(s) + Fo(s)Fo(s)F(s) Fi(s)

Fi(s) = Fu(s). [F, 1 (s)Fi(s)Fi(s) + F;, o(s)Fi(s)Fi(s) + ... + Fi(s)FL(s)F;, 4 (s)]

The Z-transform of the above set of equations gives the tiweedsional trans-
form for number served during the busy period and the lenfthebusy period and is

given by the matrix functional equation
F*(s,z) =zI+ F.(s)F*(s,2)Fi(s)F*(s,z2). (4.5.1)

Evaluating the joint transform at= 1 and including the final departure gives the matrix

required to compute the Laplace transform for the busy detioation as
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F'(s)F(s) = Fi(s) + Fy(s)F" () F2(s)F" () Fi(s). (45.2)

SubstitutingF*(s) F(s) = F.(s) andF*(s)F(0) = F, taking the derivative

with respect ta and evaluating at = 0, we get,

(F7(0) = (Fi(s) + Fy(s) Fip(s)” + F(s)Fip(s) Fi(s) + Fy(s)F7(s)Fp(s)')
s=0
(4.5.3)
Using F;(0) = H,, F.(0) = H, F,0) = —-DH,andF;(0) = —DH,,
F’.(0)" is obtained by iteration on

Fiy(0)) = —-DH,- DH, F;(0)° + H, Fj(s) Fi(0) + H,F;(0) F;(0)’

where,D = (B\a + B\S)*l andF7%.(0) =Y H,

Let 7, represent the r.v. for the length of a busy period, then

Eln] =
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4.5.1 Simplifications in an M/M/1 Case

In this case

1

F: SR
(%) A p+s

=—— and F*
A p+s o(5)

Hence the Laplace transform for the length of busy period#£8§.2), simplifies to

A p
F'(s)=1+ ———F*(s)———F"
() +A+u+s (QA+M+S (5)

Therefore,
MF*(8)2 =N+ p+8)P2F(s)—(A+p+s)?=0

Solving forF' *(s) and selecting the appropriate root using the conditionEhéats) =
s=0
1 and post-multiplying withF™;(s) gives the well know transform for th& /M /1 busy

period,

A p+8) — VA +p+ )2 — 4\

F(s) = ( 2\

(4.5.4)

Also note that the Laplace transform for BiiM/1 case can be written directly as
a summation of conditional Laplace transforms, condittboe the number of customers

served during a busy period, i.e.,

F*( ) 0 1 om )\inu2n+2 ()\+u)2n+1
S =
Z n ()\ + M)4n+2 ()\ + 1 + 8)2n+1

57



4.6 Mean First Passage Timefor Different Threshold Levels

Consider a system where the system just transitioned froet te— 1 to leveln
and we are interested in the mean first passage time to reakhidkeveln — 1. In this
section we show the effect of correlations in arrival andriserprocesses on the mean
first passage time to go from back to this threshold level 1 for different threshold
levels.

A Y A V.

| Threshold » ..
- level ,,,,,,,,,,,,,,,,,,;_{:,_fi.‘i_.ﬁ *****************

Figure 14: Higher Level First Passages

This first passage time differs from a normal busy period anlyhe way the
process starts. Once that starting vector for this “Ele/Bigsy Period” is known, then the
rest of the analysis is similar to a normal busy period. To pota this starting vector, we
consider all possible paths that result in such a transém@hthen compute the invariance
vector. If we letP,_, ,, denote the probability matrix that represents all the fegaths
that lead the queue from level— 1 to leveln for the first time, using a common first
passage argument [14], we can compkie, ,, using the following set of recurrence

relations.

PO,l = VaLa
P, =(I- HsPO,l)_IHa
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Pnfl,n = (I - HsPn72,n71)_1Ha

If we cross a given thresholgh — 1) and start the process in thé" state with
a starting vectop,,_, ,, thenY H,P,,_, ,, represents all the possible ways in which we
will cross the same threshold for the first time, after drogdielow the threshold. Hence
the required starting vector for crossing a threshola ef 1 reachingn is computed as

the invariance vector for the matrik H, P,,_, ,,.

To show the effect of increase in threshold level on this fiestsage time, and
to study the effect of correlation in the arrival process aadvice process on the mean
of this first passage time, we use the general setup foMBE/MEP/1system. For a
c? of 25 for the arrival process and 9 for the service process ilization of 0.75 and
correlation decay parameter of 0.7 (where applicable), lwethis mean first passage

time as a function of the threshold level in Fig.15.

When both the arrival and service processes have a coomrldécay parameter
of 0.7, the starting vector for the correlated G/G/1 caseaftmransition from state 1 to
state 0 igp, ; = (0.853,0.016, 0.125,0.005) and the mean length of the first passage time
from level 1 to level O is 3.92. As we increase the thresholellethe mean first pas-
sage time from leveh to n — 1 increases and converges. In this example, the starting
vector converges tp,, ,, , = (0.45,0.535,0.006,0.008) and the mean first passage time
converges to 36.46 which is quite higher than the mean fistggge time from level 1 to

level 0. This increase in mean busy period as threshold ieestases can be understood
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Figure 15: Mean Lenght of First Passage From Lev& n — 1

by noticing that for the queue to cross the higher threshwddrternal states of the Ar-
rival and Service processes should already be such that ¢ith Arrival process is in its
faster state or the Service process is in it slower state tbr; lamd due to the correlation
in these processes, the arrival and/or the service praxésse to remain in those same
states for a while, which means that the transient queudHeaiga higher threshold is
bound to increase more than in the case when the the threshslbwer. After a certain
height the mean busy period converges because once the ipa@hes a certain height,
the probability of the Arrival process being in the slowetstor the Service process being
in the faster state is so low that a further increase in tolelsthoes not effect the starting

phases for the arrival and service processes.
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4.7 PathsThat Crossa Given Level During a Busy Period

In this section we compute the probabilities of going aboweight/ during the
first passage from level to leveln — 1. We then show the effect of correlations in the

arrival and service processes and the effect of the stdevusg)(n), on these probabilities.

Figure 16: Paths within a channel of height

Let X, represent all the possible paths that start at a given lexekad at the
same level, never going below that level and are of heighostm i.e., all paths within a
channel of height. We now have the following set of recurrence relationsXdys
Xo=1
X, =(I-H,X,H,)™!
X,=(I-H,XH,)™!

Let M,, be the r.v for the density for Maximum height during a firstgege from

leveln to leveln — 1. Hence,

ProbM, < h]=pX, H,e h> 1. (4.7.1)
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The probability that during a busy period a given level isssed is

ProbfM,, > h]=1—- pX, 1 H.e h>1 (4.7.2)

The vectorp for starting at different levels is computed using the applopre-
sented in the previous section. The effect of both the catices in the arrival and service
processes as well as the effect of changing the base levhkse probabilities is shown
in Table. 6. The correlation decay parameter gamma is sef tafdl a squared coefficient
of variation of 9 is used for both the Arrival and Service meses. Utilization is set to

0.75.

M/M/1 M/M/1 G/G/1 G/G/1
From 1-0| From 10-9| From 1-0| From 10-9
Prob. that Height greater th&n

0.428571

0.428571

0.369322

0.620431799

0.243243

0.243243

0.212039

0.501704526

0.154286

0.154286

0.140600

0.442551601

BN RS

0.103713

0.103713

0.101558

0.406558265

10

0.014699

0.014699

0.039565

0.316721063

Mean length of the busy period?

Mean length||

0.799 |

0.799

2.07

1632 |

Mean nos. served in a busy period?

Mean nos.

4

4

10.38

70.81

csquare

5.25

5.25

61.2

10.8

Table 6: Paths of Height greater than

Some very interesting numbers can be seen in the table aboveexample, the
probability that the queue grows above a height of 10 duribgsy period for &6/G/1

system for a transition from level 1 to level 0 is 0.03956 vehas the same probability for
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a transition from level 10 to level 9 is 0.3167 which is ordefrsmagnitude higher. The ef-
fect of this can be clearly seen in both the mean length of tisg period which increases
from 2.07 to 16.32 and the mean number served during a busydpehich increases
from 10.38 to 70.81. This is purely the effect of the increiasease level. Also note the
increase in csquare for the the mean number served in a busy pacreases from 5.25
in an M/M/1 case to 61.2 in &/G/1case; this is the sum effect of the correlations and
variances in the arrival and service processes. Also threre@ame not so obvious num-
bers such as the decrease in csquare®f@/1 system as the base level changes from 1
to 10; but perhaps the reason for this is that at a higher t&egé is a lower chance of
having fewer number of customers served, i.e., the mean eusdrved is high (70.81)
with relatively small variance of 10.8 compared to a highiarace of 61.2 in the case

where the base level is 1.
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CHAPTER 5
BUSY PERIOD ANALYSIS OF FINITEQBD PROCESSES

5.1 Introduction

In this section we present solutions for the number of custsnserved during
a busy period and the length of a busy period for fintEP/MEP/1system where ei-
ther one or both of the arrival or service processes can hallgeauto-correlated. We
present numerical results and study how the moments anctatrtgations in the arrival
and service processes affect the busy period. This incltrdeprobabilities of serving
exactlyn customers during a busy period and the moments of the lerigkie dusy pe-
riod for different allowable system (queue) sizes. The Itegpalgorithms use dynamic

programming techniques and are easily implemented.

Consider a server in a certain facility that has finite resesi{memory, disk space
etc.) Most performance measure studies of interest lilkntags, system times, waiting
times etc. study the system from the perspective of an inegroustomer with an ob-
jective of reducing the delays experienced by the customéegrogresses through the
system. If one needs to take certain proactive measuregxtomple to avoid certain
breakdowns, it is equally important to study the system fthenservice providers per-
spective. An understanding of how many customers are beingd by the server on a
continuous basis, i.e., between the servers idle timessisumental in devising proactive

schemes to achieve optimal performance.

Due to the restrictions presented by the finite boundarielsthe effect of the
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boundary on the state transitions leading to the boundarjaio queueing studies, in-
cluding the busy period analysis, are more intricate forfiiée system as compared to

their infinite counterparts.

5.2 Busy Period of aFinite M EP/MEP/1 Queue

Now consider a finite queueing system where the maximum sysiee (and

hence the the highest level a sample path can take) is linted Fig. 17 shows all

AU TAvAR

| Il 1l v \%

Figure 17: Paths with exactly three arrivals and three daepzs

possible paths wherein exactly three arrivals and threartiges occur during a sample
path, such that the sample path always stays above thengteatel (level 1, in this case)

and ends exactly at this level; i.e., all sample paths thgintet some level and end at the
same level never taking any excursions below that levelhéncase of an infinite queue

there are five such possible paths (the count given by Cataianbers).

We now require that the sample paths do not cross a given threigtesenting a
finite queue of sizg. We allow the arrival process to be active when the queuellis fu
and arrivals to a full queue are lost and cleared. All posssiaimple paths that represent
exactly three arrivals and three departures within a cHaomineidth two are shown in
Fig. 18. The loops at the tops of the sample paths represaralathat are being dropped

when the queue is full. The number of paths is no longer giyetiné Catalan numbers.
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Let N7, represent the discrete random variable for the number edmes's served
during a busy period when the maximum allowable system sizeand letd;, , represent

the probability thatVy , = n.

()

DA

Ho Y5 H Yy HYPHY?  H,YAH,YR

Figure 18: Paths with exactly three arrivals and three depss within a channel of width
two

When computing/; ,, all possible paths must be considered that fit within a chan-
nel of heighty and that have exactly— 1 service completions. Note that the channel being
considered starts after the arrival of the first customarcéehen — 1 arrivals and service
completions in the channel plus one additional servicedbatpletes the transition of the
sample paths from level one to level zero at the end, congptéete corresponding busy

period, resulting im customers being served.

Let Y7 correspond to all possible paths of height less than or eéqualvith ex-

actly i customers being served and thus exactpwn transitions. Now we have,

ds, =p(0)Y;  H,e
conditioned upon the process starting in the veptor. The actual starting vector for the
busy period will be determined later.
We will now concentrate on deriving the recursive definiidor various sample

paths that servecustomers within a channel of widjh Y.
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If the first arrival is immediately followed by a service col@jon we have exactly
one customer served, the probability of this occurring(i$) H ;e. In all other cases, the
second arrival occurring before the first departure. Thee ateans that a transition from
two customers in the system down to one customer in the systeshoccur at least once
before the busy period ends. Let therekbservice completions in the transition from
level two, to level 1 for the first time without exceeding adtgiof j — 1. Then there are

i — 1 — k services in the remainder of the busy period without exeegdiceiling of;.

Y/’s are recursively defined as follows:

Yi=I-H,)™", Yi=Yi=. =1
Y{=H,I-H, 'H, Y.=(Y}" n > 2
i—1
YI=> H)Y,'HY!, , i>22<j<i (5.2.1)
k=0
Y/ =Y, j >

Notice that the general structure of the definitiorY(jfstiII resembles the general Catalan
recursionC,, = Z?jol C;C,_;_1. In this respect, each of these sub-paths is similar to a

Dyck path [38] starting from the starting point of the sulikpa

For different allowable heights, we have a complete sé'@. The following
matrix gives a better understanding of the relationshigvben all the differenY{’s and

theY,’s that we see in the case of infinite queues.
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Y) Y, Y,

YI YV, YV, .

Y, Y Y, Y,

Y; Y3 Y] Y; Y,

Y, Y] Y] Y, Y, Y,
Y, Y Y Y, Yl Y Y;

Consider the fourth row from the matrix shown. The indivicelamentsy 3, Y3 Y3, . ..
are used to compute the probabilities of serving exactlgeltoustomers during a busy
period and a finite queue of size 1, 2, 3 or higher respectividiyte that if only three
customers are served, the finiteness of the queue does re@ahgvmpact of queues of

size four or more.

It should be noted from the recursive definitions ¥6f’s and the general matrix
structure for differen’’s, that once the boundary equations 16{'s have been defined
and the first column of the matrix corresponding{q’s are defined, every other element

of the matrix can be computed using a dynamic programmingosgp.

In the case of infinite queues, the number of possible pathdioh n customers
can be served is given by tlie — 1)5* Catalan number; we are dealing with; without
much regard for the ceiling, as the effective ceiling wasé#bity, thusY; = Y. For
finite queues, we now have a full gamuth”r*;"s, and the number of possible paths is
not given by the Catalan numbers, but the general strucfu@atalan recursion is still

preserved.

Also note that by closing the individual sub-matricéég(s) using the relevant
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starting and ending vectors, we can directly read the cporasding probabilities.

pY e
pY e
pY j€
pYie
pY i€
pYie

pY €
pY €
pY 3¢
pYie
pYie
pY:ie

pY o€
pY €
pY o€
pYie
pYie
pYie

pY e
pY z€’
pY e
pYie

pY ;€
pY ,€
pYie

pY4€,
pYse' pY:e

For examplepY e’ gives the probability that exactly five customers are sedwgrihg a

busy period when the maximum system size is limited to four.

5.2.1 Computing The Starting Vector

The starting vectop,,,, for the busy period in this finite queueing case is computed

using
pbquHs-Hl = pbp'

where, Y = Y~ 'Y represents all possible paths that lie within a channel dftwj.
The equation for computing the starting vector of a randosylperiod symbolizes the
invariance for the system state between the starts of twoesswe busy periods. The
invariance equation fgp,, is similar to that of the infinite queue case except that nav th
paths that comprise th¥ are limited by the size of the queue, hence replace® by
The intuition is still valid, that at the start of a random pgeriod if the starting vector is
Py, then following one of the possible paths’ the busy period endd{,), followed by

an arrival event occuring causing the start of the next besypg.
An alternate method [14], to compute the starting vectoryisniroducing X ;,,
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representing all possible paths within a band of heightith possible loops at the top,
then for a given maximum system sigzeX , ; can be computed using,

X() = (I - Ha>71!

X1 :(I—HQXOHS)_I,

X2 :(I_HaXlﬂs)_l>

Xsfl = (I - HaX872Hs)_l7

and the starting vectgs,, is computed using

pprS—leHl - pbp'

Now, the probability that exactly customers are served during a busy period of
a finite queue where the maximum height of a sample path or themnum system size
is restricted tos (corresponding to a maximum channel width of sjze s — 1 followed

by the first arrival), is given by

dfhl = PTOb[NIS,O = n] — pbprzill-H—sely n Z 1.

5.2.2 Mean Number Served During a Finite Queue Busy Period

For a given channel width, define the matrix z-transfori?(z) = Yiz! +
Y22+ Y32 + .. for ¢ > 1. We can now derive the following recurrence relation for

Y(z).
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2Y = I,
2Y9 = (H, YU '2PH, YY),
AYY = (HYV'HY{' + HY 2 H Y2,

DY, = (H YO 2"HY 3 + Y L T H, Y 22

n

+. Y HYD 2,

Y(2)! = 2l +H (Y2 + Y7224y 28 400

H,(Y{' + Y2+ Y +..).

Thus,Y ?(z) satisfies the matrix recurrence equation
Y%z) =20 + H,Y" ' (2)H,Y(2), q>1. (5.2.2)

Notice the similarity to the matrix quadratic equation itat®n to the infinite queueing
situation. However we now have differekit’(z)’s for different allowable queue sizesg,

The boundary equation in the case whetre 1 is as follows

Yi(2) = Yo + Y2248+,

= 2+ Y22(IT+ (Y2 + (Y222 + ...,

= 2A+Y I -Y2)h
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At z =1,
Y'(1) = I+Y{(I-Y))!,
= I-H,(I-H, 'H,) "
Hence for any given allowable heightY (1) can be computed using
Yi1)= (I-H, Y '()H,) ', ¢>1

Taking the derivative of Eq. (5.2.2) w.r.t z and evaluatihg & 1 gives,

Y1) = IT+H, Y™V )H, Y1)+ H, Y (1)H,Y" (1). (5.2.3)
The base case when= 1, is
Y'(2)=I24+Y 22+ Y32+ ...

Taking the derivative at evaluating at= 1,
YU(1) = IT+2(Y) +3 (YD) +4(vh) + ...
= T+Y 4+ Y1yl )iyl eyl )+
= I-Y) ' '+ YIIT-Y) '+ YI-Y]) ' +...
= I-Y) " (I-Y)!

- I-H,(I-H,) 'H,)™

Hence we can compufE?’ (1) for a giveng using
—1

Y1) = (I-H,Y"'(1)H,)

: (I +H, YT (1)H5Yq(1)> L q> 1. (5.2.4)
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Now the mean number of customers served during a busy perzh whe allowable

system size is, is given by
E[N; ] = p(0) Y* ' (1)H €. (5.2.5)

Similarly the second moment is computed using,

YV (1) =201 Y1) Y,
and

Y (1) = (I-H,Y"'(1)H,) " (H Yol (1)H,Y(1)

YoH, YU (1)H, Yq(l)’> L q> 1.
(5.2.6)
It is to be noted that though the busy period analysis for géefigueue is similar

to that of an infinite queue as presented in [28], it is considly more intricate due to
the fact that we now have an entire setléf’s instead of simplyY;’s. The construc-

tive mechanism presented in the case of the infinite queuevevdoes provide a basic

mechanism to study the finite queue.

5.2.3 Mean Length of a Finite Queue Busy Period

Using the conditional Laplace transform derived in the fes section we con-
struct recursive equations similar to Eq.(8) representieglLaplace transforms for the

length of the sample paths during a busy period. The joinsfiam is given by

F*(s,2) = 21 + F*(s)F*(s,2)" ' F*(s)F*(s, 2)". (5.2.7)
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whereF” (s, z)? represents the joint transform for the length of the samptagand the
number served when the allowable height of the channgl e boundary condition at
z=1landg = 0isgivenbyF°" (s,1) = (I — F(s))~', and for any given finite queue

size, the transform for the busy period for the system siggven by

F1"(s) = p,, F1' (s)F*(s)e, qg>1. (5.2.8)
T bp s

The mean length of the busy period in this finite queueing sasemputed using

the following.
F (s)?| = (I—Fi0)F 0T Fi(0)) " - (F5(0) F*(0)7 F:(0)F*(0)+

+F;(0) F(0) F1(0)F*(0) + F,(0)F*(0)"! F:(0) F(0)"),

where F*(0) = H,, Fi(0) = H,, F*(0)? = Y% F*(0)*! = Y, F:(0) =
~-DH,, F*(0)' = -DH,, and

/

F*(O)l - - (I - Ha(I - Ha)71Hs>72 ) [DHa(I_ Ha)ile"i_

+H,(I-H, *DH,H,+ H,I-H, 'DH,].

Let 7, represent the r.v for busy period duration of a finite queuerg/ithe max-

imum allowable system size ig, then,

E[r;"] = 4 (ppr*(s)m_lF:(s)e’)

ds <=0

py (F 0P,y DI) e

(5.2.9)
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5.3 Numerical Examples

We consider here various systems where the arrival andfeiceeprocess are

markovian, renewal matrix exponential and correlated imaiponential.

5.3.1 M/M/1 Case

Consider a simpl&1/M/1 case where thé&l, and H , are scalars, some simplifi-

cations are evident. For example, siide- H,) ' H , is now equal to 1, we have

Y =H, Y.=H'n>2

But no better structure is evident yet for higher IeWéj’s than as defined by
Eq. (5.2.2). The count process for the number of possiblesphiat serve, customers
during a busy period of this system is not given by the catalambers. In-fact, there
can be an infinite number of possible sample paths due to thalarthat get dropped
represented byl — H,)~'. For any given fixed queue size we can however compute
the probabilities fom customers served during a busy period using Eq. (5.2.2).afor
M /M /1 queue with a utilization of 0.7, the probabilitiés, are shown in Table 7. Notice
that for a given system size, the probabilitiesi@ustomers served differ from the infinite
gueueing situation starting whenis equal to the maximum allowable system size. For
exampled; ;=0.093178 where as for the rest of the system sidgs,= d3° = d3* =

0.069021; this is as expected.

The Laplace transform for the length of the busy period indigueueing situation
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Table 7: MM1 Finite Queued;, , for a Utilization = 0.70

n

s=3

s=25

‘ s =10 ‘ s =100

S
dnl

0.588235

0.588235

0.588235

0.588235

0.142479

0.142479

0.142479

0.142479

0.093178

0.069021

0.069021

0.069021

0.060937

0.041795

0.041795

0.041795

0.039851

0.029762

0.028345

0.028345

0.026062

0.023093

0.020597

0.020597

0.017044

0.018606

0.015679

0.015679

0.011146

0.015221

0.012343

0.012343

O OONOOO AW N -

0.00729

0.012524

0.009965

0.009965

=
o

0.004767

0.010329

0.008208

0.008207

is of the general form

(5.3.1)

17 (s) = 1=

1 —

__r
1erJrS,b— 1

14+p+s?

and the depth of the continued

wherep = ﬁ,a: c=

Y
(I+p+s)??
fraction depends on the maximum allowable system size. Tdtdgm of finding a closed
form expression for the above finite continued partial fracseems to be an open prob-
lem as of yet. However, for any given finite system size we shelow a general form
for the first two moments for the length of the busy period. t@be the random variable
representing the length of the busy period where the fingéesy size is limited by,

_1=p

E[7°] , s> 1 (5.3.2)
L=p
s 1
E[T°?] =2 (Z T.p" "+ ) Tnp25_1_”> , s> 1, (5.3.3)
n=1 n=s—1
where,T,, are the Triangular numbers given by = ”(”2“) ,n>1.
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5.3.2 MEP/MEP/1 Case

Consider aMEP/MEP/1system where the arrival process is represented by

1 0

pa:[% %:|7 B, =14x )
0 25
1+7) (1=

L—14% (1+7) (1—7) 7
(1=9) (1+7)

wherey, = 0.9, is the parameter that controls the correlation decay optbeess. Note
that the marginal distribution is independentgfand has a mean of 0.3714 and a squared

coefficient of variationr?> = 2.7. Similarly, consider the service process represented by

3 0
]7Bs: 7L
0 4

2.775 0.225
P.=|1

0.1 3.9

This system has a utilization of 0.73 and the probabilitiesesvingn customers in a

busy period for different allowable system siz€§ () are shown in Table 8.

Table 8: MEP/MEP/1 Finite Queud;, , for a Utilization = 0.73

n

s=3

s=25

| s=10 | s=100

s
dnl

0.692976

0.692976

0.692976

0.692976

0.130622

0.130622

0.130622

0.130622

0.068845

0.050156

0.050156

0.050156

0.038867

0.024632

0.024632

0.024632

0.023346

0.018133

0.013933

0.013933

0.014738

0.015667

0.008724

0.008724

0.009649

0.013558

0.005931

0.005931

0.006477

0.011368

0.004325

0.004325

O O|N O U W N

0.004418

0.009268

0.003348

0.003348

[EY
o

0.003046

0.007407

0.003097

0.002724
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Effect of Correlation on Mean Number Served

Mean number served

l Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Max Queue Size

Figure 19:G/G/1 Effect of~, on mean number served

We show the effect of the correlation parameteon the mean and squared coef-
ficient of variation of number of customers served in thedigése in Fig. 19 and Fig. 20
respectively. An interesting observation is that for a giwgilization, as we allow the
maximum queue size attainable to grow, the mean number tdroess served during a
busy period tend to converge. Though this gives an impregkiat at higher allowable
system sizes, the correlation parameter does not have alecaide impact on the num-
ber served, the impact of this increase in correlation patanctan be clearly seen as it

effects the variance and hence the squared coefficient igingar for the number served.

We show the effect of,, on the mean length of the busy period in Fig. 21. Com-
paring the mean busy period lengths for a maximum allowabted 50 and 100, it can

be seen that except for whepis 0.9, the mean busy period lengths for a maximum height
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Effect of Correlation on Csquare
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Figure 20:G/G/1: Effect of y, on¢? for number served

of 50 and 100 match to atleast one significant digit after g@rdal. Again, this is as ex-
pected. As the correlation decay parameter increases, wélweapect the finite busy
period means to approach the infinite queue’s busy periochraegcreasing maximum

allowable queue sizes and hence they tend to converge slower

For different allowable system sizes, by ignoring the lothzd form at the top, a
set of count processes are generated from the the set oi@tgidi.2.2. Some of these
number series are known to be related to the number of pegséths in finite spaces.
However, the set of equations as defined in 5.2.2 allows usifp them all. The different
number series are readily obtained by setliffy= 1, H, = 1 andH, — 1 and are shown

in Table 9.
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Effect of Correlation on Mean Busy Period Length
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Figure 21:G/G/1 Effect of, on mean busy period length
54 Conclusions

In this chapter we derived closed form recursive solutiort®mpute the probabil-
ities forn customers served during the busy period of a fiMiEP/MEP/1system wherein
both the arrivals and services can be auto-correlated. $gadarived expressions to com-
pute the first two moments for the number of customers senve@apression to compute

the mean length of a busy period in finite queues. This framlemvides us with tools

Table 9: Catalan like sequences related to finite queues

Max

height Number Sequence
3 1,1, 2,5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657,5502
4 1,1,2,5,14,41,122, 365, 1094, 3281, 9842, 29525, 885HBY2b
5 1,1,2,5,14,42,131,417,1341, 4334, 14041, 45542, 14475, 79
6 1,1,2,5,14,42,132,428, 1416, 4744, 16016, 54320, 18462880
7 1,1,2,5,14,42,132,429, 1429, 4846, 16645, 57686, 20171EB120
8 1,1,2,5,14,42,132,429, 1430, 4861, 16778, 58598, 206534825
9 1,1,2,5,14,42,132,429, 1430, 4862, 16795, 58766, 20748824
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to study similar first passages starting from a random or &im@ment-defined starting
vectors. This approach to the busy period gives us quaktatsight into its structure and
lays a general framework to analyze other transient systempepties. The algorithms
developed are easily programmable using dynamic progragntechniques and can be

incorporated into real life performance analysis tools.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis we developed a framework which can be useduttysind better
understand many stochastic processes occurring in nakheeframework presented al-
lows the constituting processes to be both general andlatedeand hence lead to more
realistic models. Applications in finance, biological andial sciences are noted and we
study the transient busy period as it relates to computevarks and queues in detail to

demonstrate the application of tracking these memorygidtesses.

Essentially by representing the current state of a systengwsrelevant start-
ing state vector, and by allowing the driving process toycaorrelations across state
transitions of the underlying quasi-markovian chain eeahis to track these paths very

accurately.

In the first part of the thesis we provided solutions to coragie probabilities
for exactly ‘n’ customers being served in a busy perio/&P/MEP/1queueing systems
and provided some numeric results both using this analpiicaach as well as by sim-
ulation. We presented the results in this part in an algarittence making it a straight
forward task to compute the performance metrics of inteistthen presented new ma-
trix exponential representations to characterize thetkengf sample paths during these

busy periods and derived expressions to compute the morfaerttse length of a busy
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period as well as for the number of customers served dureguisy period. We studied
the effect of various parameters effecting the constiguprocesses by demonstrating the
effects of the the first three moments and the auto-coroslatin the arrival and service

processes on busy periods.

In the second part of the thesis, we study the effect of irseréa threshold level
and the correlations in the arrival and service processeseomean first passage time to
go below a given threshold. Finally we studied the busy msrfor general finite queueing
systems and derived recursive matrix quadratic equatidnshvhave a similar structure

to the matrix quadratic equations in an infinite case bute@egively more intricate.

6.2 FutureWork

As noted earlier, the matrix quadratic form 61 =) derived in Chapter.3 is closely
related to the well known matrix quadratic equation for thatm G that occurs fre-
quently in matrix geometric literature [33], [35]. In fa¢ty’ (1) H " is equivalent to the
matrix G if the system under consideration Hd&\P process as one of the driving pro-

cesses.

In [3] and [4], Kumaran et al. propose a spectral decompositased approach
to compute various performance metrics, including the imgitime, system size etc.,
for a single serveMEP/MEP/1queue. The method essentially involves constructing
a Coupling matrixC' (introduced by Van de Liefvoort [27]) from the arrival andhgee
processes, which is then spectrally decomposed to form #tiexni?, from which explicit
solutions are derived for waiting times etc. This matRxthus constructed is found to

be similar to the similarly named matri® that occurs in matrix geometric literature, in
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the sense that they have the same eigen values. LdRthmatrix that occurs in matrix
geometric literature be denoted @, and the R matrix computed from the Coupling
matrix be denoted byR,. We suspect that there exists a matrix transformation diateas
these two differenR matrices. If such a transformation were found, then the edatn
of the matrixY H ; or alternativelyG can be performed very efficiently as the maifix

andR,, are related byG = (I — R, H,)"'H,. Such a transformation remains elusive

yet.
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