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Abstract

In this paper we study the busy period of an
MEP/MEP/1 system, where both the arrival and the ser-
vice processes can be serially correlated Matrix Expo-
nential Processes. A dynamic programming algorithm
is given to compute the probabilities for servingn cus-
tomers in a busy period and expressions for the first two
moments are derived. We study both the effect of cor-
relation in the arrival and service processes and the
squared coefficient of variation on these probabilities.
The solutions give us qualitative insights into the na-
ture of the busy period of the MEP/MEP/1 system. The
resulting algorithms are easily programmable and effi-
cient.

1. Introduction

A study of transient queue length fluctuations dur-
ing a busy period provides quantitative measures that
enable proactive resource management for optimal sys-
tem performance and capacity utilization. For exam-
ple, in server consolidation models, an individual server
that forms a part of this consolidation is perceived to be
highly utilized if its queue grows beyond a given thresh-
old. Dynamic resource allocation remains a challenge
and one question that usually arises is whether or not to
allocate additional resources (such as processing power,
additional buffers, etc) to a given server. A system pa-
rameter that can facilitate in making informed decisions
in this regard is the number of customers that will be
served in this state of high utilization. This problem
can be posed as a modification of the classical busy pe-
riod problem and requires a solution based on a tran-
sient system analysis.

Most processes in telecommunications and computer
networks exhibit a high degree of variance and are
known to be serially correlated. Therefore, in order to
develop accurate models to represent these systems, we
need to allow for the arrival and the service processes
that characterize the system to be both general and cor-
related.

The busy period for a system is the time interval be-
tween any two successive idle periods. It starts when
a customer arrives to an empty system and ends when
the departing customer leaves the system idle for the
first time thereafter. In effect, a simple busy period is
equivalent to a first passage from level 1 to level 0. Fur-
thermore, the first passage from a higher level say ‘l’ to
‘(l − 1)’ is also of interest. Here, if we letl − 1 denote
a threshold, we are interested in the transient behavior
around this threshold.

For anM/M/1 system, the probabilities forn cus-
tomers being served during a normal busy period are
known, see for example Takács [20]. Takács also de-
rives the joint density for the number served and the
length of the busy period where either the inter-arrival
times or the service times have an exponential distribu-
tion [21]. More recently, Ny and Sericola [17] study
the busy period distribution of theBMAP/PH/1queue
based on an approximation of the exponential of an in-
finite sizedQ matrix using uniformization and trunca-
tion. Lucantoni et al. consider the transient BMAP/G/1
queue [13], [14] and derive the two dimensional trans-
form for the joint distribution for the number served in
a busy period and its length, which they numerically in-
vert [7]. There is extensive literature studying the tail
of the busy period, especially for the M/M/1 queue [2].
One of the observations in that paper is that the tail dis-
tributions of busy periods are sub-exponential, which
are often hard to model. Boxma and Dumas [6] re-



late the tail behavior of the active periods of the input
sources to the tail of the busy period distribution of a
GI/G/1 queue. Asmussen and Bladt [5] use the sam-
ple path approach to study the mean busy periods for
Markov modulated queues. The probabilities forn cus-
tomers served during a busy period of aGI/M/1/Nqueue
is studied by Agarwal [3] by splitting up the sample
paths at suitable renewal epochs . Heindl and Telek [9]
studied the busy period of aMAP/PH/1system. Lip-
sky extensively studied first passage times in renewal
ME/ME/1queues and uses recurrence relations for their
solutions [12].

Existing literature on busy periods usually requires
either the arrival process or the service process (or both)
to be renewal and most proceed by studying the em-
bedded Markov chain at the resulting renewal instants.
These techniques are not extendible toMEP/MEPsys-
tems as there are no such renewal points available. Fur-
thermore, most existing work rely heavily on transform
solutions and involve numerical inversions. In this pa-
per we allow both the arrival and the service processes
to be non-renewal. This allows us to study the effect
of correlation in both the arrival and service processes
on busy periods and related performance metrics. We
use a combinatorial approach that is analytic and the
solutions are obtained using closed form recursive ex-
pressions that are easily computable.

DefineDl,l−1 as the first passage process wherein
the system transitions from levell to levell − 1 ending
when levell − 1 is reached for the first time. In this pa-
per we derive recursive solutions to find the probability
for serving ‘n’ customers during this first passage in an
MEP/MEP/1queueing system, and we derive moments
for the number of customers served during this first pas-
sage. We then specialize the solutions obtained to the
case of a busy period and study the effect of correla-
tion in the arrival and service processes and the squared
coefficient of variance on these probabilities.

The rest of the paper is organized as follows. In Sec-
tion 2 we give a brief introduction to Linear Algebraic
Queueing Theory (LAQT) and develop theH operators
that we use extensively throughout the paper. In Sec-
tion 3 we modelDl,l−1 of anMEP/MEP/1system and
derive the recursive expressions for the probability ofn

customers served during this first passage and the mo-
ments for the number served during this first passage. In
Section 4 we specialize the results derived in section 3
for a busy period in anMEP/MEP/1queue. In Section 5
we perform numerous numerical studies characterizing
the effect of correlation in the arrival and service pro-
cesses and the variability in those processes on various
performance measures of interest related to busy peri-
ods. Section 6 concludes the paper.

2. Model Description

2.1. Matrix Exponential Process

We use Linear Algebraic Queueing Theory (LAQT)
to study the path taken by a queueing system during a
busy period. Here, we briefly review the needed ma-
terial. A matrix exponential (ME) distribution [12] is
defined as a probability distribution whose density can
be written as

f(t) = p(0) exp (−Bt)Be′, t ≥ 0, (1)

wherep(0) is the starting operator for the process,B

is the process rate operator, ande′ is a summing opera-
tor, a vector usually consisting of all 1’s. Thenth mo-
ment of the matrix exponential distribution is given by
E[Xn] = n!p(0)V ne′, whereV is the inverse ofB.
The class of matrix exponential distributions is identi-
cal to the class of distributions that possess a rational
Laplace-Stieltjes transform. As such, it is more general
than continuous phase type distributions which have a
similar appearance.

The joint density function for the firstk-successive
events is described by a Matrix Exponential Process
(MEP).

fk(x1, . . . , xk) = p(0) exp (−Bx1)L . . . exp (−Bxk)Le
′,

(2)
where matrixL is the event generator matrix,p is the
starting state for the process ande′ is a summing oper-
ator, a vector usually consisting of all 1’s. If the pro-
cess is stationary, then the starting vectorp satisfies
p(0) = p(0)V L. Examples for such processes are
a Poisson process (B=[λ], L=[λ]), a renewal pro-
cess(L = Be′p), and a Markovian Arrival Process
(MAP)(B = −D0, L = D1). Note thatB andL are
not limited to being Markovian rate matrices. So every
MAP is an MEP, but not vice versa (see also [10]). By
implication, stationaryMEP’sare dense in the family of
all stationary point processes as well, [4]. For additional
details, see [12, 11, 22].

2.2. H Operators

Let the arrival and service processes be represented
by < Ba, La > and< Bs, Ls > respectively. The
conditional probability that an arrival event occurs be-
fore the service event given that the starting vector is
p(0) is given by

Pr[ A < S | p(0)] = p(0)(B̂a + B̂s)
−1L̂ae′.



whereB̂a = Ba⊗Is , B̂s = Ia⊗Bs , L̂a = La⊗Is

andL̂s = Ia ⊗Ls, and⊗ is the Kronecker product op-
erator which embeds the arrival and service processes
into system space. Here,(B̂a + B̂s)

−1 represents the
average time that both the arrival and service processes
are concurrently active, and̂La represents the arrival
event occurring before a service completion. The trail-
ing e′ sums up the probabilities distributed in vector
form and is usually a column vector of all one’s of ap-
propriate dimensions.

In anMEP/MEP/1system, the conditional probabil-
ity that two successive events are both arrivals given the
system starts in statep(0) is p(0)(B̂a + B̂s)

−1L̂a ·

(B̂a + B̂s)
−1L̂ae′. Define operatorsHa for arrival

event happening before the service andHs for service
event happening before the arrival by unconditioning on
the initial state of the system, as follows:

Ha = (B̂a+B̂s)
−1L̂a and Hs = (B̂a+B̂s)

−1L̂s.

Essentially theseH operators allow us to track the
path evolution by embedding at the event transitions in
the continuous time Markov chain. At each observed
transition point, the appropriateHoperator is applied
(and normalized if needed) to update the internal state
of the discrete time Markov chain, thus allowing both
the arrival and service processes involved to be non-
renewal. We summarize whatHa andHs are for dif-
ferent systems in the table 1.

Ha Hs

M/M/1 λ
λ+µ

µ
λ+µ

M/ME/1 (λI + Bs)−1λ (λI + Bs)−1Bse′

sps

ME/M/1 (Ba + µI)−1Bae′

apa (Ba + µI)−1µ

MEP/MEP/1 (dBa + cBs)−1 cLa (dBa + cBs)−1 cLs

Table 1. Hoperators for different systems

Please note that theH operators introduced here dif-
fer from the similarly named operators in [12].

3. Conditional sample path analysis of first
passages in anMEP/MEP/1 system

Consider a system that just had a transition from
level (l − 1) to levell and letp(0) be the current inter-
nal state of the system. The events that drive the Markov
chain representing this system are either an arrival (Ha)
or a service completion (Hs). As defined earlier, let
Dl,l−1 represent the first passage process wherein the
system transitions from levell to levell−1 ending when

level l − 1 is reached for the first time. Every sample
path that belongs to the processDl,l−1 can be repre-
sented by a succession ofHa’s andHs’s. To compute
the probability of occurrence for each of these sample
paths we have to pre and post multiply theHoperator
string withp(0) ande′ respectively.
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Figure 1. Paths serving exactly 3 cus-
tomers during the first passage, Dl,l−1

The number of possibilities to serve exactlyn cus-
tomers during this first passage is given byCn−1, the
(n − 1)st Catalan number [19]. Thenth Catalan num-
berCn is computed either as1

n+1

(
2n
n

)
, n ≥ 0, or from

the recursive definition for Catalan numbers asCn =∑n−1
i=0 CiCn−i−1, C0 = C1 = 1. For example, exactly

three customers can be served during a first passage
from level l to level l − 1 by following one of the two
paths shown in Fig. 1 and the probabilities associated
with each of those paths arep(0)HaHsHaHsHse

′

and p(0)HaHaHsHsHse
′ respectively. In the

M/M/1 case these two paths would be equi-probable
with a probability of λ2µ3

(λ+µ)5 and hence the probability
for exactly three customers being served duringDl,l−1

is given by 2λ2µ3

(λ+µ)5 .
A busy period is a special case of this first passage

when l = 1. Let Nl,l−1 be the discrete random vari-
able for the number of customers served during the first
passageDl,l−1. Hence, in anM/M/1 system,

dn,1 , Prob[N1,0 = n ] = Cn−1
λn−1µn

(λ + µ)2n−1
, n ≥ 1.

In the case of aMEP/MEP/1system, the matrices
involved are generally non-commutative (HaHs 6=
HsHa) and the paths have different probabilities asso-
ciated with them. The relationship among these differ-
ent paths that serve a given number of customers during
this first passage leads us to define a set of recurrence
relations for these probability matrices, resulting in a di-
rect generalization of the recursive definition for scalar
Catalan numbers to matrices.

If Nl,l−1 = 1, then the first arrival that started the
process is followed by a departure; the probability of
this occurring isp(0)Hse

′. In all the other cases, at
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Figure 2. Paths serving exactly n customers during the first passage, Dl,l−1

least one more arrival (Ha) occurs before the first de-
parture (Hs). We consider the remaining process (after
the second arrival), as two sub processes, where a cer-
tain number of customers are serviced before returning
to levell for the first time followed by a certain number
of customers serviced before finally returning to level
l − 1 (See Fig. 2). In this respect, each of these sub-
paths is similar to a Dyck path [18] starting from the
starting point of the sub-path. Thus exactlyn customers
can be served during this first passage (Dl,l−1) by serv-
ing n − i customers before returning to levell for the
first time, followed by servingi − 1 customers before
the last customer departs the system, followed by the fi-
nal departure event returning the system to levell − 1
for the first time.

The above insight and explicit enumeration of all the
possible paths for a few cases allows us to define the
following set of recurrence relations. Please note that
theses derivations are independent of the current state
of the system (as long as the server is active). Let,

Y 0 = I,
Y 1 = HaY 0HsY 0,
Y 2 = HaY 1HsY 0 + HaY 0HsY 1,

...
Y n−1 = Ha [Y n−2HsY 0 + Y n−3HsY 1 + . . .

+ . . . + Y 0HsY n−2],
Y n = Ha [Y n−1HsY 0 + Y n−2HsY 1 + . . . +

+ . . . + Y 0HsY n−1] .

whereI is an identity matrix of the dimensions of ei-
ther the service process or the arrival process whichever
is anMEP and it would be in the product space if both
of these areMEPs. Y i is the operator that transfers
the internal state of the system as the system transitions
from level l back to levell while traversing only states
l, l + 1, l + 2, . . . and after having served exactlyi cus-
tomers. Here,Y i is independent of the levell, as all the
information that differentiates transitions for different
levels is present in the system starting vector on which
Y i operates, andY i depends only on the number of ar-
rivals and departures. Furthermore, the operatorY iHs

represents serving exactly(i+1) customers while tran-
sitioning down by one level. In short

Y 0 = I,

Y n−1 =

n−2∑

i=0

HaY n−i−2HsY i, n > 1.

Please note the similarity between the above definition
for Y n−1 and the recursive definition for Catalan num-
bers. Indeed, if one would unravel the recurrence rela-
tion, there would beCn−1 terms in the expression for
Y n−1. Also note that the definition forY n−1 is order
preserving and hence the correlation that is present in
the arrival and service events are effectively captured
therein.

Now the probability that exactlyn customers are
served duringDl,l−1 conditioned on the internal sys-
tem state being inp(0) at the transition from levell − 1
to levell is given by,

dn,l , Prob[Nl,l−1 = n ] = p(0)Y n−1Hse
′, n ≥ 1.

wheree′ is a column vector of all 1’s whose dimensions
depend on whether the system is anM/M/1, M/MEP/1,
MEP/M/1 or an MEP/MEP/1. For theM/MEP/1 and
MEP/M/1, its dimension corresponds to either the ser-
vice processes or the arrival processes dimension re-
spectively, and for anMEP/MEP/1systeme′ is in the
product space given bye′ = ê′

ae′

s, wherêe′

a = e′

a⊗Is.
For the scalarM/M/1 case it is trivial.

It is to be noted here that this derivation for the prob-
ability of n customers being served in this first passage
is a general result and does not require the queueing pro-
cess involved to be recurrent, i.e., this derivation holds
even for an unstable system (utilizationρ > 1). In
particular, this setup will allow the computation of the
probability that the busy period is finite.



3.1. Moments for the number of cus-
tomers served during Dl,l−1

Thez-transform for the number of customers served
during this first passageDl,l−1 is

y(z) =
∞∑

n=1

Prob[Nl,l−1 = n].zn = b1z + b2z
2 + . . .

SinceY n−1 forms the core ofdn,l, one can now de-
fine the matrixz-transformY (z) = Y 0z

1 + Y 1z
2 +

Y 2z
3 + . . ..

From the definition ofY n one arrives at the matrix
quadratic form forY (z) as follows:

z1
Y 0 = Iz1

z2
Y 1 = (HaY 0z

1
HsY 0z

1)

z3
Y 2 = (HaY 1z

2
HsY 0z

1 + HaY 0z
1
HsY 1z

2)

... =
...

zn+1
Y n = (Ha[Y n−1z

n
HsY 0z

1 + Y n−2z
n−1

Hs.

Y 1z
2 + . . . + Y 0z

1
HsY n−1z

n])

Y (z) = zI + Ha(Y 0z
1 + Y 1z

2 + Y 2z
3 + . . .)

Hs(Y 0z
1 + Y 1z

2 + Y 2z
3 + . . .)

Thus,Y (z) satisfies the matrix quadratic equation

Y (z) = zI + HaY (z)HsY (z). (3)

Notice that this matrix quadratic form forY (z)
(equation (3)) is closely related to the common matrix
quadratic equation for the matrixG that occurs in lit-
erature [14], [16]. In fact, “Y (1)Hs” is equivalent
to the matrixG if the system under consideration has
MAPprocesses, andY (1)Hs extends the functionality
of G to our current more general situation. The cur-
rent derivation is a combinatorial approach and imple-
mented with dynamic programming techniques to keep
the computational costs in control. Also, the matrixY

is constructed from the individual components as a lim-
iting process which gives us qualitative insights into the
recursive structure of the busy period.

Taking the derivative ofY (z) in equation (3),

Y ′(z) = I +HaY ′(z)HsY (z)+HaY (z)HsY
′(z),

and evaluating at z=1, gives

Y ′(1) = I + HaY ′(1)HsY + HaY HsY
′(1), (4)

where,

Y =

n=∞∑

n=0

Y n. (5)

HereY should be directly computed from its indi-
vidual components as a limiting process. Alternatively,
if the busy period is known to be recurrent (ρ < 1),
thenY can be computed by a fixed point iteration on
thez-transform equation forY (z) at z = 1. Empirical
studies show that this fixed point iteration does converge
when the busy period is recurrent, and a proof will be
shown in future work.

Similarly, we can computeY ′(1) either by iteration
on equation (4) or as a limiting process. The mean for
the number served during this conditional first passage
is given by

E[Nl,l−1] = p(0)Y ′(1)Hse
′. (6)

Similarly the second moment is

E[N2
l,l−1] = p(0)Y ′′(1)Hse

′. (7)

whereY ′′(1) is computed either as a limiting process
or by iteration on

Y ′′(1) = HaY ′′(1)HsY + 2HaY ′(1)HsY
′(1)

+HaY HsY
′′(1).

If the H ’s are of sizem by mthen the computation
of Y n would take3n matrix multiplications andn ma-
trix summations. Hence the time complexity is of or-
derO(m3n), which is computationally manageable, es-
pecially since the matrix dimensions do not grow with
path lengths. Also the matrixY can be obtained by it-
eration on the z-transform equations usingO(m3) com-
putations per iteration.

4. Number of customers served in busy pe-
riods of an MEP/MEP/1 system

As mentioned in the previous section, the busy pe-
riod is a special case of the first passage processDl,l−1

whenl = 1. Let the internal state of the system at the
start of a busy period be represented bypbp. Assuming
that the utilization of the system is less than one (ρ < 1)
and hence that a busy period always ends, this starting
vector (pbp) is the normalized invariance vector for the
start of a random busy period and is the solution to the
following equation

pbpY HsY a = pbp.

i.e., pbp is the normalized left eigenvector correspond-
ing to an eigenvalue of 1 for the matrixY HsY a. The
intuition is that if the process starts inpbp at the start
of a random busy period, its value at the start of the
next busy period is given by traversing one of the pos-
sible pathspbpY , followed by the final departureHs



(back to state zero), after which only the arrival process
is active until the next arrival eventY a (computed as
V aLa), thus starting the next busy period.

Once the starting vector for a busy period is known,
the expressions for Prob[N1,0 = n] and E[N1,0] follow
directly from the results in the previous section. Hence,
the probability that exactlyn customers are served dur-
ing a busy period is given by,

dn,1 = Prob[N1,0 = n ] = pbpY n−1Hse
′, n ≥ 1,

and mean number of customers served during a busy
period is

E[N1,0] = pbpY
′(1)Hse

′.

We summarize the procedure to compute these metrics
in Algorithm 1.

Algorithm 1 To compute the Prob[N1,0 = n] and
mean for the number served during busy period of a
MEP/MEP/1system

1: SetupHa andHs from the arrival and service process
representations.

2: ComputeY by a fixed point iteration on

Y = I + HaY HsY ,

using,Y (0) = I

Y
(i) = (I + HaY

(i−1)
HsY

(i−1)), i > 0.

Alternately,Y can be computed as a limiting process. See
equation 5.

3: Findpbp, the left eigenvector corresponding to an eigen-
value of 1 forY HsV aLa.

4: To compute Prob[N1,0 = n]:

• ComputeY n−1 using,Y 0 = I ,

Y n−1 =

n−2
X

i=0

HaY n−i−2HsY i n > 1

• Probability that exactlyn customers are served in a
busy period is

Prob[N1,0 = n ] = pbpY n−1Hse
′, n ≥ 1.

5: To compute the mean number served in a busy period:

• FindY ′(1) using fixed point iteration on

Y
′(1) = I + HaY

′(1)HsY + HaY HsY
′(1).

• Mean for number served is given by,

E[N1,0] = pbpY
′(1)Hse

′.

5. Numerical Results

Using the general derivation for theMEP/MEP/1
system presented above, we compare our results to
existing solutions for the number served during the
busy period for anM/M/1 and anM/D/1 system. We
then compare and validate our analytical results with
trace driven simulations forM/MEP/1, MEP/M/1 and
MEP/MEP/1systems. Finally, we perform parametric
studies on anMEP/MEP/1system using our analytical
solutions.

5.1. Comparison to M/M/1 and M/D/1:

For theM/M/1 case, the probabilities thatn + 1 cus-
tomers are served in a busy period is given by [20]

Prob[Nb = n + 1] =
1

n + 1

(
2n

n

)
λnµn+1

(λ + µ)2n+1
, n ≥ 0,

where the combinatorial multiplier is thenth Catalan
number. Our results match exactly with this closed form
solution and, as we mentioned in Section 3, we consider
our derivation as a generalization of Catalan numbers
for matrices.

For the M/G/1 case, a closed form explicit result
is known when the service distribution is determinis-
tic [8]. In this case, the probability ofn number of cus-
tomers served in a busy period (fn) is given by the Borel
distribution

fn =
1

n

(λτn)n−1

(n − 1)!
e−λτn, n ≥ 1.

Consider now the ME density with representation
< p5, B5, e5 >, where

p5 =
ˆ

1 3
10

7
160

1
400

1
7680

˜

B5 =

2

6

6

6

6

4

0 3
2

0 0 0
0 0 3

2
0 0

0 0 0 3
2

0
0 0 0 0 3

2

480 −576 300 −90 15

3

7

7

7

7

5

e5 =
ˆ

1 0 0 0 0
˜

.

This ME form represents the function

f(t) =
1

960
(12939− 14896 cos (3 t)

−9504 sin (3 t) + 2017 cos (6 t)

+4344 sin (6 t))e−3 t

The aboveME is an example of a distribution that is not
also of a Phase type because the density is equal to zero



for various values of t as can be seen in fig.3. This dis-
tribution has a mean of 1 andc2 of 1

12 . The ten fold con-
volution of this density has a mean of 1.0 and a squared
coefficient of variation (c2) of 0.004, and is used in this
paper to approximate a deterministic distribution. With
this ME as the service process representation and with
a Poisson arrival stream with a mean rateλ = 0.8, we
get the probabilities shown in Table 2.

0.0

t

1.0

1.25

0.75

0.5

0.25

1.50.5 2.0 2.51.00.0

Figure 3. ME Density that touches the x-
axis multiple times

Table 2. M/D/1 Comparison, Utilization =
0.8

n Borel distribution Our Result
Prob[N1,0 = n] Prob[N1,0 = n]

1 0.4493289641 0.449926477600
2 0.1615172144 0.161409917100
3 0.08708923515 0.086978314120
4 0.05565399583 0.055568460030
5 0.03907336297 0.03900843250

Please note that even with the approximation to the
deterministic distribution, the results are very close to
the known Borel distribution.

5.2 MAP/MAP/1 System

SinceMAP’s form a subset of theMEP’s, we can
compute these probabilities (Prob[N1,0 = n]) for a
MAP/MAP/1system. Consider aMAP/MAP/1system

where the arrival is represented by

D0 =

»

−7.1041 0
0 −0.3959

–

,

D1 =

»

6.9916 0.1125
0.1125 0.2834

–

,

and the service process is represented by the rate ma-
trices

D0 =

»

−9.4721 0
0 −0.5279

–

,

D1 =

»

9.3221 0.15
0.15 0.3778

–

.

This is equivalent to anMEP/MEP/1system where
for both the arrival and service processes theB’s and
L’s can be derived from the correspondingD0’s and
D1’s, i.e., from the arrival processD’s we can get,
Ba = −D0, La = D1, and from the service process
D’s we get,Bs = −D0, Ls = D1 respectively. This
system has a utilization of 0.75 with a correlation decay
parameter of 0.7 andc2 of 9.0 for both the arrival and
service processes. The corresponding probabilities are
shown in Table 3.

Table 3. MAP/MAP/1 System, Utilization =
0.75

n Prob[N1,0 = n]

1 0.63060456
2 0.12076481
3 0.05671077
4 0.03417086
5 0.02313089

n > 5 0.13461808

5.3 Simulation Results

For simulations, we generate traces using an ME
process that is correlated. For this purpose, we use a
hyper-exponential distribution with starting vector (p),
where the rate matrix (B) is adjusted for the required
c2 (squared coefficient of variation) and the event tran-
sition matrixL is adjusted to control the correlation de-
cay. It has theME representation

p =
[

p1 1 − p1

]
,

B = λ

[
2p1 0
0 2(1 − p1)

]
,

L = Be′p,



wherep1 = 1
2 + 1

2

√
c2−1
c2+1 . This process is an un-

correlated sequence. In order to construct correlated
processes with geometrically decaying covariances that
share the same marginals, we use the approach pre-
sented in [15]. DefineL(γ) for −1 < γ < 1 as

L
γ = (1 − γ)(Be′p − B) + B. (8)

TheL(γ) thus constructed introduces geometrically de-
caying correlations in the process, while leaving the
marginals (and therefore thec2) invariant.

5.3.1 M/MEP/1 System

For anM/MEP/1system, the effect of increasing thec2

on the probabilities forn customers being served dur-
ing a busy period while keepingγ (correlation decay
parameter) at 0.99 is shown in Table 4. As can be seen
from the table, the simulation results follow the ana-
lytic results closely. As thec2 of the service process
increases, there will be many requests with short ser-
vice demands (compared to interarrival times), hence
increasing the count of busy periods in which fewer cus-
tomers are served. However, there will also be arrivals
that have longer service demands, but since they are cor-
related, they tend to cause fewer very long busy periods,
hence not contributing significantly to the count of busy
periods.

5.3.2 MEP/M/1 System

As can be seen in Fig. 4, as thec2 of the arrival pro-
cess increases, the probability for only one customer
served in a busy period decreases. In other words, the
relative number of busy periods serving one customer is
decreasing.
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Figure 4. MEP/M/1: Effect of increasing c2

in uncorrelated case

The effect of increasing thec2 of the arrival process
in a correlated vs non-correlated(MEP/M/1 vs ME/M/1)
system is interesting to note (See Fig. 5). When thec2

is increasing for the non-correlated case, the number of
busy periods with fewer customers served decreases and
the busy periods with more number of customers served
gradually increases, hence the probability for one cus-
tomer served in a busy period decreases (Prob[Nb = 1]
= 0.404 for ac2 = 100 andγ = 0). On the other hand,
when the arrival process is highly correlated, there are a
few busy periods that are extremely long and there are
fewer busy periods where only one customer is served
(as compared to the normalM/M/1 case). Because of
these extremely long busy periods and a decrease in to-
tal busy period count, the probability that only one cus-
tomer is served increases (Prob[Nb = 1] = 0.974 for a
c2 = 100 and γ = 0.99), even though the absolute
count of busy periods where exactly one customer is
served decreases.
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Figure 5. MEP/M/1: Effect of correlation on
Prob[ Nb = n]

5.3.3 Parametric studies using theMEP/MEP/1
model

In this section we show how the values ofc2 andγ affect
the system under study. For this purpose we use the gen-
eral derivation used for theMEP/MEP/1system. With
γ fixed at 0.99 for both the arrival and service processes,
we increase the value ofc2 for both the processes from
4 to 100 while keeping the system utilization at 0.75. A
c2 of 100 andγ of 0.99 represents a system where the
arrivals and service demands are both very erratic and
correlated (bursty). Fig. 6 represents this effect.

It should be noted that the probability density for
the number served for a highly correlated and variant



Table 4. Simulation vs Analytical for M/MEP/1, Utilization = 0.75
c2 = 1 c2 = 9 c2 = 100

Analytical Simulation Analytical Simulation Analytical Simulation
n Prob[Nb = n]

1 0.571428571 0.57117927 0.715999851 0.71601889 0.726246184 0.72640603
2 0.139941691 0.139843148 0.145404403 0.14564553 0.144367891 0.144379278
3 0.068542869 0.068994283 0.059055301 0.059103117 0.057396756 0.057232489
4 0.041965022 0.042159178 0.029981189 0.029880241 0.028524242 0.028464697
5 0.028776015 0.028677701 0.017047444 0.016780497 0.015876653 0.015988375
6 0.021141562 0.021184264 0.010385734 0.010434037 0.009468192 0.009456229
7 0.016272223 0.016016045 0.006628639 0.006665474 0.005915325 0.005884958
8 0.012951361 0.013016432 0.004374999 0.004417871 0.003821632 0.003816901
9 0.01057254 0.01059373 0.002961674 0.002941219 0.002532298 0.002588751
10 0.008803257 0.008900555 0.00204508 0.002003509 0.001711516 0.0017103
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Figure 6. MEP/MEP/1: Effect of increasing
c2

MEP/MEP/1system matches very closely with a simple
M/M/1 system. For example, the probability for serving
exactly one customer has a value of 0.712 for ac2 of 4
and goes down to 0.580 when thec2 is 100, which is
very close to that in anM/M/1 system, 0.571. This re-
sult is quite counterintuitive, since we would expect the
busy periods of a highly correlatedMEP/MEP/1sys-
tem to be somewhat different than that of anM/M/1
system. Note however that only the relative count of
busy periods that serven customers stays the same.
The c2 for number served during a busy period how-
ever changes from 5.25 for anM/M/1 system to 210 for
anMEP/MEP/1system. Hence in anMEP/MEP/1sys-
tem, there are some busy periods that are extremely long
even though the averages look similar to anM/M/1 sys-
tem.

6 Summary and Future work

In this paper we derived closed form recursive so-
lutions to compute the probability density forn cus-
tomers served during the first passage,Dl,l−1, in a cor-
relatedMEP/MEP/1 system. These conditional first
passages provide us with tools to study similar first pas-
sages starting from a random or an environment-defined
starting vector. We then analyzed the busy period of
a MEP/MEP/1 queue as a special case of these first
passages and studied how these performance metrics
are affected by the correlation in arrival and service
processes. This approach to the busy period gives us
qualitative insight into its structure and lays a general
framework to analyze other transient system properties.
The algorithms developed are easily programmable us-
ing dynamic programming techniques and can be incor-
porated into real life performance analysis tools. Fu-
ture work will involve studying first passage time distri-
butions andk-busy periods based on similar analytical
techniques as presented in this paper.
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