
A QoS Oriented Framework for Adaptive
Management of Web Service based Workflows

Chintan Patel, Kaustubh Supekar, and Yugyung Lee

School of Interdisciplinary Computing and Engineering
University of Missouri-Kansas City
{copdk4, kss2r6, leeyu}@umkc.edu

Abstract. Web Services are emerging technologies that enable application-
to-application communication and reuse of autonomous services over
Web. Traditional Workflow Management Systems fail to provide a com-
prehensive solution for a Web Service based Workflow. A framework
that meets the quality of service (QoS) requirements for ad hoc Inter-
net based Services is rarely provided. Considering the increasing demand
for expanding services and application requirements coupled with use of
Web Services, it is a challenging task to develop a QoS model as a frame-
work for Web Service based Workflows. In this paper, we have proposed
a QoS oriented Framework, called WebQ, that is capable of conduct-
ing the adaptive selection process and simultaneously provides binding
and execution of Web Services for the underlying workflow. To achieve
these objectives, as the first step, we have designed a QoS model for
Web Service selection, binding, and execution. We, then, develop a set
of algorithms to compute QoS parameters and implement them using a
rule-based system. A series of experiments performed on workflows com-
posed of real Web Services have confirmed that the proposed framework
is very effective in improving the overall QoS of the system.

1 Introduction

Web Services have been used to achieve system interoperability over the Web
through exchange of application development and service interactions using the
standards like Web Services Description Language (WSDL), Universal Descrip-
tion, Discovery and Integration (UDDI) [1], and Simple Object Access Protocol
(SOAP) [2].

While current Web Service technologies show much progress, the current ser-
vices are mainly limited to atomic services [3]. Thus, it is not adequate to handle
the autonomous and complex services in realistic settings. In dealing with this
problem, some research work [4] has developed languages to compose the individ-
ual Web Services into transactions or workflows. Web Services Flow Language
(WSFL) was designed for service compositions in the form of a workflow [5],
XLANG [6] for the behavior of a single Web Service. However these works are
not sufficient for providing the adaptive web Services generated from a particular
context.

2 C. Patel et al.

In fact, the automatic or semi-automatic management of service flows over
the Web has not been achieved. For the purpose, we need to examine the char-
acteristics of the composition model of Web Services. In the Web Services model
that is quite different from traditional one, there is the large number of similar
or equivalent services which user can freely select and use for their application.
Second, since the service is developed and deployed by the third party, the qual-
ity of service is not guaranteed. Third, the services may not be adequate as
per service requestor’s requirements and kept evolving, without notification to
service requestors, according to the provider’s requirements and computing en-
vironment. Thus, it is important to provide adaptability to evolving services as
well as diverse context of services.

Kammer et al. [7] suggested workflow to be dynamic, which allows changes
with minimal impact to the ongoing execution of underlying workflow, as well
as be reflexive, which provides knowledge about a workflow’s applicability to
the context and the effectiveness of its deployment evaluated over time. Under-
standing constraints and context associated with services may affect the quality
of service. From this perspective, optimization may occur through the evaluation
and refinement of a previous service flow. Facilitating service composition may
not be difficult if one knows which Web services and in which order to compose.
However, automatic composition of services is challenging. It is because it is
difficult to capture semantics and context of services and measure the quality
of services. One exemplary effort that aims for this function is DAML-based
Web Service Ontology (DAML-S) [8], describing the properties and capabilities
of Web services [9].

The goal of this project is to develop a QoS-based web service framework,
called WebQ, that enables to select appropriate Web services, dynamically bind
the services with the underlying workflow, and perform the refinement of existing
services. Since evaluation and refinement of services tend to be subjective, the
generation of them needs a formal matrix, which can measure the requirements
and quality of services. In the WebQ Framework, criteria is quantitatively set
to evaluate whether a particular service is appropriate for specific service flow
and to define service quality. This generic framework can be applicable to the
various domains, such as e-commerce, medicine, and bioinformatics.

2 Related Work

Workflow technology has been around since a decade and has been successful in
automating many complex business processes. A significant amount of work has
been done in this field which deal with different aspects of workflow technology
viz process modeling, dynamic workflows [10], distributed workflows [11]. Process
modeling languages such as IDEF, PIF [12], PSL [13] or CIMOSA [14] and
frame based models of services were used to design process typing, resource
dependencies, ports, task decomposition and exception.

On the other hand Web Services are emerging resources on the web and have
received a great deal of attention from the industry. Standards such as WSDL,

A QoS Oriented Framework for Web Services 3

SOAP, and UDDI are being developed for low-level descriptions of Web ser-
vices. Web Services Description Language (WSDL) provides a communication
level description of the messages and protocols of services [15]. Simple Object
Access Protocol (SOAP) invokes services through remote method invocations
over HTTP [2]. Universal Description, Discovery and Integration (UDDI) [1]
announces and discovers services which are registered by their providers at a
logically central registry. Some emerging approaches include additional features
through the use of ontologies, e.g.describing and indexing services based on pro-
cess models [16].

Current research on web services paves way for web service based workflows,
which has obvious advantages pertaining to scalability, heterogeneity, reuse and
maintenance of services. Major issues in such inter-organizational service based
workflows are service discovery, service contracts [17] and service composition.
Web Services Flow Language (WSFL) was proposed to describe compositions of
services in the form of a workflow, which describes the order of service invocation
[5]. Service composition aids such as BizTalk [18] were proposed to overcome the
limitations of traditional workflow tools [14] which manually specify the com-
position of programs to perform some task. Other industrial initiatives such as
BPEL4WS [19], XLANG [6] concentrate on service representation issues to tackle
the problem of service contracts, compositions and agreements. Current efforts
[20] are to automate the complete process of service discovery, composition and
binding using machine understandable languages. Some other recent advances
are WS-Transaction [21] and WS-Coordination [22] which defines protocols for
executing Transactions among web services. [23] focuses on modeling QoS of
workflows, [24] defines a QoS based middleware for services associated with the
underlying workflow, but it doesn’t take into account QoS factors related to In-
ternet based services. [25] describes QoS issues related to web services from the
provider’s perspective. We believe that the current research has not delved into
QoS issues related to Web Service based workflows, many critical issues related
to the availability, reliability, performance and security of Web Services need to
be handled. Our approach tactfully utilizes and monitors these QoS parameters
to provide a consistent service interface to other applications in the workflow
through adaptive QoS based selection, binding and execution of Web Services.

3 WebQ Framework

3.1 Architecture

WebQ framework depicted in Figure 1 is comprised of gamut of collaborative
components that allows for QoS oriented adaptive management of Web Service
based workflows. We first illustrate various phases of workflow management in
WebQ.
Phase 1: Workflow Modelling A workflow is defined, using DAML-S [8], as a
collection of tasks accomplished using in-house services-components or through
third party services.

4 C. Patel et al.

Monitor

RULE
Repository

Expert
System
[JESS]

Web
Service

Mediator

Knowledge

Base

Intelligent Task

Execution engine

WEB

T1 T2

T3

T5

T4
Workflow

Fig. 1. The WebQ Architecture

Phase 2: QoS Requirements Setting QoS parameters associated with the
underlying workflow are specified. In this paper, three categories of QoS - task-
specific QoS, Internet service specific QoS and general QoS parameters were
introduced. Designer specifies QoS requirements in a multilevel rule hierarchy
[26].
Phase 3: Initialization WebQ fetches set of Web Services for every task in
the underlying workflow. Each Web Service is assigned a uniform fitness value
Ω. Fitness value Ω is defined as ”How fit a web Service is for executing a task
for given QoS requirement.” Initially, we randomly select m services per task
as every Web Service has a uniform fitness value. It could be noted here that
absence of apriori knowledge about third party services calls for assignment of
uniform fitness value.
Phase 4.a: Execution and Monitoring In the execution phase load (number
of requests) per task is divided across m selected Web Services associated with
that task. Rationale behind selecting best m Web Services and load distribution
methodology is discussed in Section 3.3. Task is accomplished on execution of
selected Web Services. During execution associated QoS parameters are moni-
tored, recorded and asserted as facts in Knowledge Base.
Phase 4.b: Dynamic and adaptive Web Service selection The process
of continuous monitoring of workflow under execution updates related QoS pa-
rameters which in turn updates associated fitness value. Deteriorating QoS of a
selected Web Service triggers Rule that forces de-selection of that Web Service
and re-selection of new set of m best services. The dynamic service selection pro-

A QoS Oriented Framework for Web Services 5

cess accounts for the adaptability of the framework to an ad-hoc environment
where quality of a Web Service changes stochastically.

In the following discussion we elicit role of each component in various phases.
Workflow,the process under execution, is a collection of tasks that can either
be accomplished by in-house services or through third party services. DAML-S
[8] specification is used to specify workflow. Web Service Mediator queries
the web for services that would accomplish a particular task. Essentially it uses
information stored in UDDIs across the web to retrieve listing of task specific
Web Services. Monitor is responsible for monitoring, measuring and asserting
facts about newly calculated-observed values of general, task-specific and Inter-
net service specific QoS parameters. It calculates various values on the basis of
mathematical underpinnings of our proposed QoS model. Intelligent Task Ex-
ecution Engine manages and co-ordinates execution of tasks that are part of
underlying workflow. The engine utilizes DAML-S [8] encoded information about
the workflow to co-ordinate the execution of tasks, providing input to a task,
binding and execution of a Web Service associated with the task, routing the re-
quest to appropriate task depending upon the output obtained. Expert System
allows assertion of facts in the knowledge base depending upon the rules fired.
WebQ uses JESS [27] based on Rete [28], a low complexity algorithm, reduces
the overhead associated with dynamic selection and binding of Web Service to
a task at runtime. Knowledge Base is a repository of facts about Web Service
related parameters - reliability, latency, execution time, performance and other
QoS parameters. Rule Repository collects rules used to specify user specific
QoS requirements, available workflow QoS and elicitation of steps to be taken
for achieving specified QoS requirement. We use a multi-level approach wherein
firing of a set of atomic rules leads to composite rule being executed [26].

3.2 QoS Based Service Selection and Execution

Our QoS model proposed in this paper dynamically selects the best among the
available services and performs parallel execution of services. The goal of the
adaptive selection and execution is to maximize the overall QoS. For the purpose,
we carefully reviewed QoS parameters and classified them into the following three
categories: General, Internet Service Specific and task specific QoS parameters.
In order to design the Quality of Service for Web Service based workflow, multiple
perspectives of the stakeholders of the system were considered. This task can be
achieved by maintaining separate set of QoS management rules per user per task
node, which would sum up to meet the overall desired QoS requirements.

QoS model should be flexible and extensible enough to capture the fine gran-
ularity of requirements that could arise in any given domain. [24] considers only
generalized QoS features for traditional Workflow Management Systems, an In-
ternet based Service Workflow requires a comprehensive QoS model that also
incorporates task specific QoS requirements. Tables 1, 2 and 3 show a QoS
model which captures all these essential features.

6 C. Patel et al.

Table 1. General QoS parameters

QoS Parameter Description Measure

Performance The time taken to deliver tlatency = to/p(X)− ti/p(X),
(Latency) services between service ti/p(X) is the timestamp when

requestors and providers the service X is invoked and
to/p(X) is timestamp
when the service X is delivered.

Performance The number of requests served tthroughput = Number of service
(Throughput) in a given period [24]. invocations in time T

Reliability This parameter is related to R = 1− P (success)
the number of failures of a where P (success) is
service in a time interval. as probability of successful executions,

P (success) =
Num of successful executions/N ,
N : Total number of invocations

Cost The cost of the service execution C = C(Enactment) + C(Licensing)
including the enactment cost
(management of workflow system
and monitoring [24]) and
licensing fees of Web Services.

Table 2. Internet-Service Specific QoS

QoS Parameter Description Measure

Availability The probability that the Pavailability = C(X)/N ,
service will be available at some C(X): Num of Successful executions
period of time. An associated N : Total number of invocations
parameter is time-to-repair, TTR = trestart(X)− tfailed(X),
the time taken to repair a service where TTR represents Time To Repair,
[25]. tfailed is timestamp when the service

X failed, trestart is timestamp
when service was restarted.

Security Confidentiality, non repudiation Values assigned by
message encryption and access the workflow designer
control [25]. depending upon the strength of

the Encryption technology used,
PKI, Kerberos etc [3].

Accessibility Instances when a particular service Paccessibility = Pavailability

is not accessible even if its at Time T = t
available because of high volume
of requests.

Regulatory A quality aspect which deals with Specific in-house ratings by
issues of conformance of service the workflow designer at design time.
with the rules, the law, compliance
with standard, and the established
Service Level Agreement [25].

A QoS Oriented Framework for Web Services 7

Table 3. Task Specific QoS

QoS Parameter Description Measure

Task specific Related to the quality E(TaskQoS) = w1 ∗ f(p1) + w2 ∗ f(p2)
of the output or + . . . + wn ∗ f(pn) where f(pi) refers
the type of service to the probability function that maps
offered etc. the output of parameter pi to a specific

value depending upon how close
the output is to the desired value
wi is the weight assigned to pi.

3.3 Best One v/s Best m approach

The WebQ QoS model allows selecting best service that fits the QoS requirement.
The approach of selecting a single third party service to accomplish a task is
inherently unreliable. Consider a scenario where we have n available services for
a given task. Our Best One QoS model approach would select one service for
that task. Most of Web Services used in the workflow are third party services
that cannot be trusted. It is quite possible that the execution of workflow is
in jeopardy because of failure of best available service. The problem can be
accounted for single point dependency between the workflow task and third party
service. Our model accommodates for such problem, we advocate selection of best
m against single best service. The WebQ framework allows selection of best m
services based on fitness value Ω. Selection of m allows load distribution across
these services. One of approach is to equally distribute load across m services.
In this way better service can take more load than a average service hence a
weighted average approach can distribute the load across m best services.

The load distribution function (ldf) can be expressed as a function of fitness
value Ω associated with Web Service. Load per Web Service = ldf(Xi) = Li =
N ∗wi; 1 < i < m;

∑
wi = 1, Xi is the ith service from set of m best services. N

is the total number of inputs at a given time t. wi is weight associated with Web
Service Xi. It is function of fitness value Ωi of Xi. wi = f (Ωi) A Web Service
Xi with a high fitness value Ω would have high weight wi as most of the load
can be handled by better services. wi = Ωi/

∑
Ωi. Consider an example where N

= 1000 (1000 users request weather information), n = 5 (5 Web Services provide
weather information), m = 3(3 best Web Services were selected using our QoS
model). Assume observed fitness values on scale of 100 as Ω1 = 95, Ω2 = 35,
Ω3= 85, Ω4 = 60, Ω5 = 50. Three best Web Services are X1, X3 and X4 when
top three services are selected among services arranged in descending order of
fitness values. We assign weight to each Web Service w1 = 95/(95+85+60) =
0.395, w3 = 85/(95+85+60) = 0.355, w4 = 60/(95+85+60) = 0.25. Based on
this load distribution function, load per Web Service L1 = w1 ∗ N = 395, L3 =
w3 ∗ N = 355, L4 = w4 ∗ N = 250.

The Best m approach has a two fold advantage. First, it makes the work-
flow fault-tolerant. Probability of failure of workflow is now distributed across m
services against a single point dependency. Failure of one or more Web Services

8 C. Patel et al.

would not completely jeopardize the execution of underlying workflow. Second,
distributing load across m services improves efficiency of overall system as sim-
ilar tasks can be concurrently executed. We conclude that the concurrent, load
distributed QoS model renders a workflow that is fault tolerant, efficient and
reliable.

4 Implementation and Experimental Results

As a proof of concept we implemented and deployed a Java based prototype of
the proposed model on Linux. Our major goal was to test the QoS management
in a Web Service based workflow using JESS rule-based system. The intelligent
task execution engine was constructed through Java implementation which reads
the process specifications in DAML-S, selects, binds and executes Web Service
from a service pool associated with each task. Monitor component asserts QoS
measurements in the logDB, JESS Knowledge base. JESS Rules, measures of
QoS requirements, are triggered by deteriorating Quality of Service. Dynamic
service selection leads to the refinement of the workflow for maximizing the
overall QoS. Java Web Services toolkit (JAX-RPC) was used for implementing
the in-house Web Services and for interactions with third party Web Services.

We conducted relevant experiments to validate the proposed QoS oriented
framework for adaptive management of Web Service based workflows. The tests
were performed on existing services available on the Internet. We focussed on a
single task in the underlying workflow. The weather information retrieval task
was singled out as the basis of all our experiments. The choice of task was
dictated by the amount of freely available third party services for that task. The
main goal of the tests was to determine the performance gain by our approach of
distributing load per task across m task specific services and to illustrate how the
dynamic service refinement process renders an efficient, high performance and a
fault tolerant workflow. Following Web Services were selected to accomplish the
task of retrieving weather information.

Table 4. Input for the Performance Gain Experiments

ID Provider1 WSDL

WS1 www.xmethods.net http://www.xmethods.net/sd/2001/TemperatureService.wsdl

WS2 www.ejse.com http://www.ejse.com/weatherservice/service.asmx?WSDL

WS3 www.juice.com http://webservices.juice.com:4646/temperature.wsdl

WS4 FastWeather http://ws2.serviceobjects.net/fw/FastWeather.asmx?WSDL

We tested each of the services individually, then incorporated them into our
Workflow, and compared the difference in the performance. Performance gain,
G is ratio of total time taken for single Web Service (n inputs) to the time

1 The services were used for just experimental analysis, we do not intent to endorse
or discriminate between providers.

A QoS Oriented Framework for Web Services 9

taken when all services in set S are executed simultaneously with n inputs being
divided between them.

We conducted tests for 10, 100, 250 and 500 inputs, corresponding perfor-
mance gain was calculated, G = 3.28, 4.31, 5.38, 5.62 respectively. Results in-
dicate an average performance gain of 400% (G = 4). Higher values of (G > 4)
can be attributed to the fact that WebQ uses weighted average load distribution
function as against uniform load distribution. The results as depicted in Fig-
ure 2a strengthens our hypotheses that the WebQ approach of load distribution
renders a high performance and fault-tolerant workflow.

Secondly, we validate the proposed QoS based selection approach, a set of
Web Services (depicted in Table 4) were tested rigorously across Internet and
their QoS parameters were measured over a period of time. In these tests, we
monitored a subset of QoS parameters - latency, throughput, and availability.

Performance Gain

0

50000

100000

150000

200000

250000

300000

10 100 250 500

No. of inputs

T
im

e
 t

a
k
e
n

(m
s
e
c
)

Avg(WS1,2,3,4)
(Individual)
MaX(WS1,2,3,4)
(Parallel)

Latency (Sampling)

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6

t hours after start

la
te

n
c

y
 (

m
s

e
c

)

WS1

WS2

WS3

WS4

t=t1 t=t2

Availability [Pr(commited/invoked)]

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

xth hour

P
ro

b
a

il
it

y
 v

a
lu

e

WS1
WS2
WS3
WS4

t=t1 t=t2

Throughput(invocations/hr)

0

1000

2000
3000

4000

5000
6000

7000

8000
9000

1 2 3 4 5 6

xth hour samples

 n
u

m
b

e
r

o
f

in
v

o
c

a
ti

o
n

s

(?
(i

n
v
o

c
) WS1

WS2

WS3
WS4

t=t1 t=t2

Fig. 2. Experimental Results:(a) The Performance Gain (b) Latency (c) Availability
(d) Throughput

QoS requirements on selecting the task node were services which are 1) highly
available 2) handle large number of inputs and 3) provide maximum throughput.
The experimental results (Figure 2b, 2c, 2d) at instances t = t1 and t = t2

10 C. Patel et al.

show the associated QoS parameter values for Web Services WS1, WS2, WS3

and WS4 at time t1 and t2 respectively. The number of inputs(load) at time
t = t1 were 30 and t = t2 were 50. JESS Rules, measure of aforementioned
QoS requirements, were triggered to select services WS1, WS3 (m=2) at t = t1
and WS1, WS2(m = 2) at t = t2. It is important to note here that the failure
of service WS3 that was selected at time t = t1 doesn’t effect quality of the
underlying workflow. It is because our dynamic Web Service selection at t = t2
leads to selection of the new set of best m (=2) services, WS1 and WS2.

Moreover our research into existing Web Services revealed a highly impor-
tant factor concerning the Availability parameter. Many Web Services listed on
UDDIs were not available for most of time, hence we assert that Availability is
an important QoS factor to take into consideration for selection of services.

Our results confirmed that Performance is also an important parameter for
selection for the service. Tests revealed a large amount of variation in the per-
formance of the Web Services. For Web Services WS2 (mean latency = 800ms)
and WS3(mean latency = 775 ms) we observed there are very high values of
variance, 110 ms and 132 ms respectively. Hence in such unpredictable Internet
environment, creating a Internet based workflow demands strict performance
monitoring and subsequent dynamic modification of the workflow execution.

5 Conclusions

We proposed a Web Service based framework for adaptive workflow management.
A comprehensive QoS model can provide consistent interface of Web Services
to workflow-based applications. Incorporated rules in the framework helped to
establish a dynamic workflow by achieving a fine-grained control over service se-
lection. The experimental results confirmed the effectiveness of the framework in
enhancing the overall QoS of the system. As an ongoing work, we have extended
the rule-base system to achieve automatic Web Service composition consisted of
DAML-S semantics.

References

1. UDDI technical white paper, http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf,
2000

2. D. Box and D. Ehnebuske and G. Kakivaya and A. Layman and N. Mendelsohn,
H. F. Nielsen and S. Thatte and D. Winer, Simple object access protocol (SOAP),
www.w3.org/TR/SOAP, 2000

3. Web Services Architecture, http://www.w3.org/TR/ws-arch/
4. V. Benjamins and E. Plaza and E. Motta and D. Fensel and R. Studer and B.

Wielinga and G. Schreiber and Z. Zdrahal and S. Decker, Ibrow3: An intelligent bro-
kering service for knowledge-component reuse on the world-wide web, In The 11th
Banff Knowledge Acquisition for knowledge-Based System Workshop (KAW98),
Banff, Canada, 1998.

5. F. Leymann, Web services flow language, TR WSFL 1.0”, IBM Software Group,
May, 2001.

A QoS Oriented Framework for Web Services 11

6. S. Thatte, XLANG Web Services for Business Process Design, 2001
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm

7. P. Kammer, G. A. Bolcer, R. N. Taylor, M. Bergman, Techniques for Supporting Dy-
namic and Adaptive Workflow, Vol 9, Journal of Computer Supported Cooperative
Work (CSCW), 269-292.

8. DAML-S Specifications, http://www.daml.org/services/
9. D. McDermott and M. Burstein and D. Smith, Overcoming ontology mismatches

in transactions with self-describing agents, Proceedings of the First International
Semantic Web Working Symposium (SWWS), 285-302, 2001

10. J. Meng, S. Y.W. Su, H. Lam and A. Helal, Achieving Dynamic Inter-organizational
Workflow Management by Integrating Business Processes, Events, and Rules, Pro-
ceedings of the Thirty-Fifth Hawaii International Conference on System Sciences
(HICSS-35), January 2002.

11. J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, and H. Singh. WebWork:
METEOR 2 ’s web-based workflow management system. Journal of Intelligent In-
formation Systems, 10(2):185-215, 1998

12. . J. Lee, G. Yost, and PIF Working Group. The pif process interchange format and
framework. Technical Report 180, MIT Center for Coordination Science, 1995.

13. C. Schlenoff et al., The essence of the process specification language, Transactions
of the Society for Computer Simulation, 16(4), pp. 204-216, 1999.

14. K. Kosanke, CIMOSA - Open System Architecture for CIM; ESPRIT Consortium
AMICE, Springer-Verlag 1993.

15. E. Christensen and F. Curbera and G. Meredith and S. Weerawarana, Web services
description language (WSDL) 1.1, www.w3.org/TR/wsdl, 2001

16. M. Klein and A. Bernstein, Searching for services on the semantic web using process
ontologies, Proceedings of the International Semantic Web Working Symposium
(SWWS), July, 2001

17. Y. Hoffner, H. Ludwig, P. Grefen and K. Aberer, Crossflow : Integrating Workflow
Management and Electronic Commerce, SIGeCOM ACM 2001

18. Biztalk http://www.microsoft.com/biztalk/
19. Business Process Execution Language for Web Services, Version 1.0, July 2002

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
20. S. McIlraith and T. Son and H. Zeng, Semantic Web services, IEEE Intelligent

Systems (Special Issue on the Semantic Web), 16(2), 46-53, 2001.
21. Web Services Transaction (WS-Transaction), August 2002,

http://www-106.ibm.com/developerworks/webservices/library/ws-
transpec/?dwzone=webservices

22. Web Services Coordination (WS-Coordination), August 2002, http://www-
106.ibm.com/developerworks/library/ws-coor/

23. J. Cardoso, A. Sheth, J. Miller, Workflow Quality Of Service (2002)
24. A. Sheth, J. Cardoso, J. Miller, K. Koch, QoS for Service-oriented Middleware

(2002) ”Web Services and Grid Computing,” Proceedings of the Conference on
Systemics, Cybernetics and Informatics, Orlando, FL, July 2002.

25. A. Mani, A. Nagarajan, Understanding quality of service for Web services,
http://www-106.ibm.com/developerworks/library/ws-quality.html

26. C. Patel, K. Supekar, Y. Lee, Adaptive Workflow Management for Web Service
using QoS Framework, Technical Report TR030103, University of Missouri - Kasas
City, 2003.

27. Java Expert System Shell, http://herzberg.ca.sandia.gov/jess/
28. Rete Algorithm, http://herzberg.ca.sandia.gov/jess/docs/52/rete.html

